

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

MySQL 5.6 Replication
An Introduction

A MySQL® Technical White Paper by Oracle

June 2014

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 2 of 28

Table of Contents

1 INTRODUCTION .. 4

2 REPLICATION FUNDAMENTALS .. 4

Replication Modes and Data Consistency .. 5

Statement-Based Replication ... 6

Row-Based Replication ... 6

Mixed-Format Replication ... 7

3 SUMMARY OF REPLICATION CHANGES IN MYSQL 5.6 .. 8

HA Using MySQL Replication and GTIDs .. 8

Binary Log Group Commit .. 15

Optimized Row Based Replication ... 16

Crash-Safe Replication ... 16

Replication Event Checksums ... 17

Time-Delayed Replication ... 17

4 REPLICATION USE CASES .. 18

Scale-Out .. 18

High Availability ... 19

Geographic Replication .. 19

Backup Database ... 20

Analytics ... 20

5 REPLICATION TOPOLOGIES ... 21

Master to Slave .. 21

Master to Multiple Slaves .. 21

Master to Slave(s) to Slave(s) (Hierarchical or Cascading Replication) ... 21

Master to Master (Multi-Master) .. 21

Multi-Master Ring ... 22

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 3 of 28

Multi-Master to Slave (Multi-Source) .. 22

6 REPLICATION INTERNAL WORKFLOW ... 22

Replication Threads .. 23

Replication Log Files ... 24

7 DIFFERENCES WHEN REPLICATING WITH MYSQL CLUSTER 24

8 REPLICATION MONITORING WITH MYSQL ENTERPRISE MONITOR 26

9 CONCLUSION .. 28

10 RESOURCES .. 28

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 4 of 28

1 Introduction
MySQL Replication enables users to cost-effectively deliver application performance, scalability and
high availability. Many of the world's most trafficked web properties like eBay, Facebook, Tumblr,
Twitter and YouTube rely on MySQL Replication to elastically scale-out beyond the capacity
constraints of a single instance, enabling them to serve hundreds of millions of users and handle
exponential growth.

By mirroring data between instances, MySQL replication is also the most common approach to
delivering High Availability (HA) for MySQL databases. In addition, the MySQL replication utilities can
automatically detect and recover from failures, allowing users to maintain service in the event of
outages or planned maintenance.

With the release of MySQL 5.6, a number of enhancements have been made to MySQL Replication,
delivering higher levels of data integrity, performance, automation and application flexibility. We will
discuss these enhancements in the whitepaper.

We will also explore the business and technical advantages of deploying MySQL Replication and
describe the fundamental enabling technology behind replication.

This paper concludes by outlining the major differences when using replication with the MySQL
Cluster database.

A companion white paper (MySQL 5.6 Replication – Tutorial1) provides a simple step-by-step guide
on how to install and configure a master/slave topology, as well as handle failover events. It
demonstrates how to do this using Global Transaction Identifiers (GTIDs) as well as the extra steps
needed when taking the more traditional approach.

2 Replication Fundamentals
For the purposes of this paper we define “replication” as the duplication of data to one or more
locations. These can be co-located within a data center, or geographically distributed. In the
forthcoming sections we will cover the differences between popular types of replication.

Replication enables a database to copy or duplicate changes from one physical location or system to
another (typically from the “master” to a “slave” system). This is typically used to increase the
availability and scalability of a database, though users will often also perform back-up operations or
run analytical queries against the slave systems, thereby offloading such functions from the master
systems.

MySQL natively supports replication as a standard feature of the database. Depending on the
configuration, you can replicate all databases, selected databases, or even selected tables within a
database.

MySQL Replication works by simply having one server act as a master, while one or more servers act
as slaves. The master server will log the changes to the database. Once these changes have been
logged, they are then sent and applied to the slave(s).

1 http://www.mysql.com/why-mysql/white-papers/mysql-replication-tutorial

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 5 of 28

Figure 1 MySQL Replication Supports HA and Read Scalability “Out of the Box”

Using MySQL replication provides the ability to scale out large web farms where reads (SELECTs)
represent the majority of operations performed on the database. Slaves present very little overhead
to Master servers (typically a 1% overhead per slave), and it is not uncommon to find 30 slaves
deployed per master in larger web properties1.

Replication Modes and Data Consistency

There are multiple modes of replication, defined as asynchronous, semi- synchronous or
synchronous.

Asynchronous Replication
By default, MySQL is asynchronous.
Updates are committed to the
database on the master and then
relayed to the slave where they are
also applied. The master does not
wait for the slave to receive the
update, and so is able to continue
processing further write operations
without being blocked as it waits for
acknowledgement from the slave.

When using asynchronous
replication, there are no guarantees
that all updates are replicated to the
slave in the event of an outage of the
master. Semi-Synchronous replication – discussed below – can be configured to enhance
consistency between a MySQL master and its slaves, reducing the risk of data loss in the event of a
failover.

1
 Refer to Ticketmaster materials in the Resources section for an example of complex MySQL replication topologies

Figure 2 Contrasting different replication modes

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 6 of 28

Any delay (lag) of committed updates to the slaves is most noticeable with highly transactional
applications where there is an abundance of write operations.

With the correct components and tuning, replication can appear to be almost instantaneous to the
application.

Using asynchronous replication, slaves need not be connected permanently to receive updates from
the master. This means that updates can occur over long-distance connections and even over
temporary or intermittent connections. Depending on the configuration, you can replicate all
databases, select databases, or even selected tables within a database.

Semi-Synchronous Replication
Semi-Synchronous Replication can be used as an alternative to MySQL’s default asynchronous
replication, serving to enhance data integrity.

Using semi-synchronous replication, a commit is returned to the client only when a slave has received
the update, or a timeout occurs. Therefore it is assured that the data exists on the master and at least
one slave (note that the slave will have received the update but not necessarily applied it when a
commit is returned to the master).

It is possible to combine the different modes of replication, so some MySQL slaves are configured
with asynchronous replication while others use semi-synchronous replication. This ultimately means
that the Developer / DBA can determine the appropriate level of data consistency and performance on
a per-slave basis.

The different replication modes described above can be contrasted with fully-synchronous replication
whereby data is committed to two or more instances at the same time, using a “two phase commit”
protocol. Synchronous replication gives assured consistency across multiple systems, and facilitates
faster failover times in the event of an outage, but it can add a performance overhead as a result of
additional messaging between nodes.

Statement-Based Replication

By default, MySQL leverages statement-based replication where SQL statements (not the actual data
changes) are replicated from the master to the slave(s).

An advantage of statement-based replication is that in some cases, less data ends up being written to
log files, for example when updates or deletes affect many rows. For simple statements affecting just
a few rows, then row-based replication can take up less space.

There are also some disadvantages to statement-based replication, most notably it cannot support
statements which have nondeterministic behavior – like a current time function.

Row-Based Replication
Row-based replication logs the changes in individual table rows as opposed to statements. With row-
based replication, the master writes messages, otherwise known as events to the binary log that
indicate how individual table rows were changed. This is akin to more traditional forms of replication
found in other RDBMSs. In general, row-based replication requires fewer locks on the master and
slave, which means it is possible to achieve higher concurrency. A disadvantage of row-based
replication is that it can generate more data that must be logged. For example, if a statement
changes 100 rows in a table, that will mean 100 changes need to be logged with row-based
replication, while with statement-based replication only the single SQL statement is required to be
replicated.

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 7 of 28

It should be noted that development work to enhance MySQL replication is focussed on RBR over
SBR and so it is recommended that you use RBR unless you have a compelling reason not to.

If MySQL Cluster is being used then row-based replication must be used.

Mixed-Format Replication

The binary logging format can be changed in real time according to the event being logged, using
mixed-format logging. With mixed-format enabled, statement-based replication is used by default, but
automatically switches to row-based replication under some conditions – for example:

• A DML statement that updates a MySQL Cluster table
• A statement contains UUID()
• Two or more tables with AUTO_INCREMENT columns are updated
• When any INSERT DELAYED is executed
• When the body of a view requires row-based replication, the statement creating the view also

uses it — for example, this occurs when the statement creating a view uses the UUID()
function

• A call to a User Defined Function (UDF) is made

For a complete list of conditions please visit: http://dev.mysql.com/doc/refman/5.6/en/binary-log-
mixed.html

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 8 of 28

3 Summary of Replication Changes in MySQL 5.6
MySQL 5.6 introduces the most significant set of Replication enhancements ever released.

These enhancements deliver the following benefits:

High performance

• Improves consistency of reads from slaves (i.e. reduces the risk of reading "stale" data)
• Reduces the risk of data loss should the master fail before replicating all events in its binary log

(binlog)

High availability

• Simpler failover through the use of GTIDs
• Proactive monitoring of the replication topology to identify issues before they can cause an

outage

Data integrity

• Ensuring replicated data is correct, consistent and accessible

Developer / Operations (DevOps) Agility

• Automation to reduce administrative overhead
• Flexibility to support the rapid evolution of business requirements
• Maintaining low Total Cost of Ownership (TCO).

Each of these are discussed in more detail below.

HA Using MySQL Replication and GTIDs

The most significant HA enhancements come from
the introduction of Global Transaction Identifiers
(GTIDs). The primary motivation for introducing
GTIDs is that it enables seamless failover or
switchover with minimal manual intervention and
service disruption.

GTIDs are unique identifiers comprising the server
UUID (of the original master) and a transaction
number. They are automatically generated as a
header for every transaction and written with the
transaction to the binary log. GTIDs make it simple
to track and compare replicated transactions
between the master and slaves, which in turn
enables simple recovery from failures of the master.
The default InnoDB storage engine must be used
with GTIDs to get the full benefits of HA.

Global Transaction Identifiers (GTIDs)
To understand the implementation and capabilities of GTIDs, we will use one of the most common
replication topologies in which a master (Server A) receives all updates, and replicates those to one
or more slaves (Servers B and C). This is often referred to simply as “Master / Slave replication” or a
“tree topology”, and is illustrated in Figure 3.

Master

Slave

Slave

A

B

C

Updates

Updates

Figure 3 Simple master/slave topology

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 9 of 28

In the event of Server “A” crashing, we need to
failover to one of the slaves, promoting it to master,
while the remaining server becomes a slave of that
new master, as illustrated in Figure 4.

As MySQL replication is asynchronous by default,
servers B and C may not have both replicated and
executed the same set of transactions, i.e. one
may be more complete than the other. Consider
the following scenarios:

• Server B is more complete than C and B is
chosen as the new master

• Server C needs to start to replicate from
the first transaction in server B that it is yet
to receive

• Server C may have executed transactions that have so far not been received by Server B
• Server B therefore needs to execute any missing transactions from Server C, before

assuming the role of the master, otherwise lost
transactions and conflicts can ensue

GTIDs apply a unique identifier to each transaction, so it is
becomes easy to track when it is executed on each slave.
When the master commits a transaction, it generates a
GTID consisting of two components:

• The first component is the UUID of the server (a
randomly generated 128-bit number)

• The second component is an automatically
incremented integer; 1 for the first transaction
committed on the server, 2 for the second
transaction, and so on

The first component ensures that two transactions
generated on different servers have different GTIDs. The
second component ensures that two transactions
generated on the same server have different GTIDs.

In ASCII, we write the GTID as “UUID:N”, e.g. 22096C54-FE03-4B44-95E7-BD3C4400AF21:4711

The GTID is written to the binary log prior to the transaction, as illustrated in Figure 5.

The GTID and the transaction are replicated to the slave. If the slave is configured to write changes to
its own binary log, the slave ensures that the GTID and transaction are preserved and written after the
transaction has been committed.

It is important to note that the slave does not generate a new GTID, even if the slave is configured as
a master to other slaves in an n-tier (hierarchical or cascading) replication topology.

Figure 5 GTID positioning in the Binlog

Failed
Master

New
Master

Slave

A

B

C

Updates

Figure 4 Failure & slave promotion

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 10 of 28

The set of GTIDs executed on each slave is exposed to the user in a new, read-only, global server
variable, gtid_executed1. The variable can be used in conjunction with the GTID_SUBTRACT()2
function to determine if a slave is up to date with a master, and if not, which transactions are missing.

A new replication protocol was created to make the
process above automatic. When a slave connects to
the master, the new protocol ensures it sends the
range of GTIDs that the slave has executed and
committed and requests any missing transactions.
The master then sends all other transactions, i.e.
those that the slave has not yet executed. This is
illustrated in Figure 6 (note that the GTID numbering
and binlog format is simplified for clarity).

In this example, Server B has executed all
transactions before Server A crashed. Using the
MySQL replication protocol, Server C will send “id1”
to Server B, and then B will send “id2” and “id3” to
Server C, before then replicating new transactions
as they are committed.

We therefore have a foundation for reliable slave promotion, ensuring that any transactions executed
on a slave are not lost in the event of an outage to the master.

Utilities for Simplifying Replication
For convenience and ease-of-use, additional MySQL Replication Utilities are provided to accelerate
the provisioning of new replication clusters.

Check& Show& HA&Replicate&

Figure 7 Fast provisioning with MySQL Replication Utilities

The utilities supporting failover and recovery are components of a broader suite of MySQL utilities3
that simplify the maintenance and administration of MySQL servers, including the provisioning and
verification of replication, comparing and cloning databases, diagnostics, etc. The utilities are
available under the GPLv2 license, and are extendable using a supplied library. They are designed to
work with Python 2.6 and 2.7. The source code is also available from the MySQL Utilities Launchpad
page4 and the package can be downloaded from the MySQL Website5.

1 https://dev.mysql.com/doc/refman/5.6/en/replication-options-gtids.html#sysvar_gtid_executed
2 http://dev.mysql.com/doc/refman/5.6/en/miscellaneous-functions.html#function_gtid-subtract
3 http://dev.mysql.com/doc/workbench/en/mysql-utils-intro-intro.html
4 https://launchpad.net/mysql-utilities
5 http://dev.mysql.com/downloads/tools/utilities/

Failed
Master

New Master

Slave

A

B

C

id1
trx1
Id2
trx2
id3
trx3

id1
trx1
Id2
trx2
id3
trx3

Id1
trx1

id2
trx2
id3
trx3

id1

Figure 6 Automatically synchronizing a new
master with its slaves

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 11 of 28

Figure 8 Launch MySQL Utilities using the pocket knife icon in MySQL Workbench

MySQL Utilities can be launched from the command line or from MySQL Workbench as shown in
Figure 8. With MySQL WorkBench 6.0 and later, you must first install MySQL Utilities before they can
be launched from the WorkBench GUI.

Replication Utility: mysqlreplicate
Enables fast and simple introduction of replication slaves, the mysqlreplicate utility is used to start
the replication process. The user provides login and connection parameters for the master and
optionally a point within the binary logs from where to start replication. Any GTIDs that have already
been executed on the slave will be skipped. The utility also checks storage engine compatibility.

Replication Utility: mysqlrplcheck
Provides simple verification of deployment and fast fault resolution. The utility checks that the binlog is
enabled and displays any configured exceptions. It then checks slave access and privileges to master
and slave connection status. Each test is run sequentially, and status reports generated.

An example of the output is as follows:

$ mysqlrplcheck --master=root@host1:3310
 --slave=root@host2:3311
 --discover-slaves-login=root
 # master on host1: ... connected.
 # slave on host2: ... connected. Test Description Status

Checking for binary logging on master [pass]
Are there binlog exceptions? [pass]
Replication user exists? [pass]
Checking server_id values [pass]
Is slave connected to master? [pass]
Check master information file [pass]
Checking InnoDB compatibility [pass]
Checking storage engines compatibility [pass]
Checking lower_case_table_names settings [pass]
Checking slave delay (seconds behind master) [pass]
...done.

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 12 of 28

Replication Utility: mysqlrplshow Discovers and displays the replication topology on-demand. It
shows slaves attached to each master and labels each slave with hostname and port number.

$ mysqlrplshow --master=root@host1:3310 --discover-slaves-login=root
master on host1: ... connected.
Finding slaves for master: host1:3310

Replication Topology Graph
host1:3310 (MASTER)
 |
 +--- host2:3310 - (SLAVE)
 |
 +--- host2:3311 - (SLAVE)
 |
 +--- host3:3310 - (SLAVE)

Replication Utility: mysqlfailover
While providing continuous monitoring of the replication topology, mysqlfailover enables
automatic or manual failover to a slave in the event of an outage to the master. Its default behavior is
to promote the first viable slave, as defined by the following slave election criteria.

• The slave is running and reachable
• GTIDs are enabled
• It is the most up-to-date slave
• The slaves replication filters do not conflict
• The replication user exists
• Binary logging is enabled

Once a viable slave is elected (called the candidate), the process to retrieve all transactions active in
the replication cluster is initiated. This is done by connecting the candidate slave to all of the
remaining slaves thereby gathering any missing transactions found in the cluster on the candidate
slave. This ensures that no replicated transactions are lost.

The election process is configurable. The administrator can use a list to nominate a specific set of
candidate slaves to become the new master (e.g. because they have better performing hardware).

To start the utility, users can specify a list of slaves or provide a default user and password to be used
in discovering the slaves connected to the master. From this list of slaves, the user can define a
specific subset of candidate slaves to be promoted to master in the event of an outage.

The utility connects to the master and its slaves from an independent host. When used in n-tier
environments, users can run one instance for each master. The utility provides the ability to run a
failover check and report the health of masters and slaves at specific intervals in one-second
increments from five seconds and up.

The following screen shot shows the health reporting provided by the utility:

MySQL Replication Failover Utility
Failover Mode = auto Next Interval = Wed Aug 15 13:19:30 2012
Master Information

Binary Log File Position Binlog_Do_DB Binlog_Ignore_DB
black-bin.000001 2586

GTID Executed Set
A0F7E82D-3554-11E2-9949-080027685B56:1-5

Replication Health Status
+---------+-------+---------+--------+------------+---------+
| host | port | role | state | gtid_mode | health |

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 13 of 28

+---------+-------+---------+--------+------------+---------+
black	3306	MASTER	UP	ON	OK
blue	3306	SLAVE	UP	ON	OK
green	3306	SLAVE	UP	ON	OK
brown	3306	SLAVE	UP	ON	OK
red	3306	SLAVE	UP	ON	OK
+---------+-------+---------+--------+------------+---------+
Q-quit R-refresh H-health G-GTID Lists U-UUIDs

At each interval, the utility will check to see if the server is alive via a ping operation, followed by a
check of the connector to detect if the server is still reachable. If the master is found to be offline or
unreachable, the utility will execute one of the following actions based on the value of the failover
mode option, which enables the user to define failover policies:

• The auto mode tells the utility to failover to one of the list of specified candidates first and if
none are viable, search the list of remaining slaves for a candidate

• The elect mode limits election to the candidate slave list and if none are viable, automatic
failover is aborted

• The fail mode tells the utility to not perform failover and instead stop execution, awaiting
further manual recovery actions from the DevOps team

In addition to these options, there are four “Extension Points” permitting users to interact with the
utility during failover. It is therefore possible for users to extend HA policies by binding in their own
scripts at each of the failover and recovery process:

• exec-fail-check: executes a script to determine if failover is needed. This replaces the
default failure detection mechanism, allowing users to perform application-specific failure
detection.

• exec-before: executes a script before failover is initiated. This can be used to tell the
application to suspend write operations while a new master is provisioned.

• exec-after: executes a script immediately after failover to the new master. This permits
users to inform the application that the new master is available and ready to accept write
operations.

• exec-post-fail: execute a script after failover is complete and all slaves have been
attached to the new master. This can be used to inform applications that it is safe to resume
reads from the remaining slaves.

The combination of options to control failover and the ability to inform applications of the failover event
are powerful features that enable self-healing for critical replication-based applications.

By default, mysqlfailover runs under the user’s terminal process but it can instead be run as a
daemon process using the --daemon option (to be used reliably the --log, --pidfile and --
report-values options should be considered). This blog post1 steps through how to run
mysqlfailover as a daemon.

Review the mysqlfailover documentation2 for more detail on configuration and options of this utility.

Replication Utility: mysqlrpladmin:
If a user needs to take a master offline for scheduled maintenance, mysqlrpladmin can perform a
switchover to a specific slave (called the new master). When performing a switchover, the original
master is locked and all slaves are allowed to catch up. Once the slaves have read all events from the
original master, the original master is shutdown and control is switched to the new master.

1 http://www.mysqlhighavailability.com/mysql-replication/standalone-mysql-utilities-now-ga-includes-running-mysqlfailover-as-a-
daemon/
2 http://dev.mysql.com/doc/workbench/en/mysqlfailover.html

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 14 of 28

There are many operations teams that prefer to take failover decisions themselves, and so
mysqlrpladmin provides a mechanism for manual failover after an outage to the master has been
identified, either by using the health reporting provided by the HA Utilities, or by alerting provided by a
tool such as the MySQL Enterprise Monitor (discussed later in this whitepaper).

You can use the utility to perform one of the following actions:

• elect: Performs election of the candidate to promote to master in the event of a failover or
switchover.

• failover: Conducts failover to the candidate. The command will test each candidate slave
listed for the pre-requisites defined above. Once a candidate slave is elected, it is made a
slave of each of the other slaves in turn, thereby collecting any transactions executed on
other slaves but not on the candidate. In this way, the candidate has the superset of all
transactions executed on any of the slaves and so, when promoted to master, no replicated
transactions are lost.

• gtid: Displays the contents of the GTID variables used to report GTIDs in replication. The
command also displays universally unique identifiers (UUIDs) for all servers.

• health: Displays the health of the master and its slaves.
• reset: Executes the STOP SLAVE and RESET SLAVE commands on all slaves.
• start: Executes the START SLAVE command on all slaves.
• stop: Executes the STOP SLAVE command on all slaves.
• switchover: Moves the master role to a specific slave.

Review the mysqlrpladmin documentation1 for more detail on configuration and options of the utility.

Replication Utility: mysqlrplsync
This utility permits you to check replication servers for synchronization. It checks data consistency
between a master and slaves or between two slaves. The utility reports missing schema objects as
well as missing data.

The utility can be used while replication is still running and is dependent on Global Transaction IDs
being enabled. When it detects that there is a data mismatch it will report the table name but not the
specific rows.

Review the mysqlrplsync documentation for more detail on configuration and options of the utility.

Replication Utility: mysqlrplms
This utility enables replication from multiple master servers (also called sources) to a single slave. At
any point in time, the slave will have a single master but the utility will rotate between the specified
masters on a round-robin basis. The utility is dependent on Global Transaction IDs and can also be
run as a daemon.

In addition to the documentation, a tutorial video2 is also available demonstrating how to configure
and use the Replication Utilities discussed above.

1 http://dev.mysql.com/doc/workbench/en/mysqlrpladmin.html
2 http://dev.mysql.com/tech-resources/articles/mysql-replication-utilities.html

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 15 of 28

Multi-Threaded Slaves
Replication performance is improved by using
multiple execution threads to apply replication events
to the slave(s).

As shown in Figure 9, the multi-threaded slave splits
processing between worker threads based on
schema, allowing updates to be applied in parallel,
rather than sequentially. This delivers benefits to
those workloads that isolate application data using
databases – for example, multi-tenant systems. The
splitting between worker threads happens as the
replicated events are read from the relay log. The
number of worker threads is configured using the
slave-parallel-workers1 parameter (where the
default value of 0 turns off the functionality).

To demonstrate performance benefits of multi-
threaded Slaves, the MySQL Engineering team
ran a benchmark2 that compared slave
throughput when using single and multi-
threaded replication. As the results in Figure 10
demonstrate, slave throughput was increased
by a factor of 5x based on a configuration with
10 databases/schemas, directly translating to
improved read consistency and reduced risk of
data loss in the event of an outage of the
master.

Slaves are better able to keep up with the
master, and so users are much less likely to
need to throttle the sustained throughput of
writes, just so that the slaves don't indefinitely fall further and further behind (at the moment some
users have to reduce the capacity of their systems in order to reduce slave lag).

Binary Log Group Commit
A significant improvement to replication
performance has been enabled by the
introduction of Binary Log Group
Commit which reduces the frequency of
writes to disk by flushing groups of
binary log writes to the Binlog file, rather
than flushing them one at a time.

This enhancement significantly improves
the performance of the replication
master, as demonstrated by the
benchmark results3 shown in Figure 11.

1 http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#option_mysqld_slave-parallel-workers `
2 https://blogs.oracle.com/MySQL/entry/benchmarking_mysql_replication_with_multi
3 http://mysqlmusings.blogspot.se/2012/06/binary-log-group-commit-in-mysql-56.html

Figure 10 Multi-Treaded Slave benchmark

Figure 9 Multi-Threaded Slaves design

Figure 11 Binary Log Group Commit benchmark

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 16 of 28

The sync_binlog1 parameter is used to control the frequency of flushes to disk where a (default)
value of 0 leaves it up to the operating system to decide when to flush, a value of 1 results in a flush
to disk after every transaction and a larger value groups the writes.

Optimized Row Based Replication
This feature is an optimization for Row Base Replication. By only replicating those elements of the
row image that have changed following INSERT, UPDATE and DELETE operations, replication
throughput for both the master and slave(s) can be increased while binary log disk space, network
resource and server memory footprint are all reduced.

This functionality is controlled by the binlog-row-image2 parameter which can be set to:

• full – the complete before and after images are included. This matches the behavior from
previous releases and is the default

• minimal - Log only changed columns, and columns needed to identify rows
• noblob - Log all columns, except for unneeded BLOB and TEXT columns

Crash-Safe Replication

Also known as Transactional Replication, Crash
Safe Slaves and Binlog extend the robustness,
availability and ease-of-use of MySQL
replication by making both the binary log and
the slaves crash safe.

As shown in Figure 12, the Binary Log
positioning information and the table data can
now be written as part of the same transaction –
ensuring that they are transactionally consistent
when using InnoDB. This enables the slave to
automatically roll back replication to the last
committed event before a crash, and resume replication without administrator intervention. Not only
does this reduce operational overhead, it also eliminates the risk of data loss or corruption caused by
the failure of a slave.

If a crash to the master causes corruption of the binary log, the server will automatically recover it to a
position where it can be read correctly.

This functionality is enabled by setting the master-info-repository3 and relay-log-info-
repository4 parameters to TRUE.

1 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_sync_binlog
2 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_row_image
3 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_master-info-repository
4 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_relay-log-info-repository

Figure 12 Table data & binlog position
transactionally consistent

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 17 of 28

Replication Event Checksums
Data integrity within a replication environment assures
data is correct, consistent and accessible.

Replication Event Checksums ensure the integrity of
data being replicated to a slave by detecting data
corruption and returning an error, preventing the slave
itself from becoming corrupt.

Checksums are written in the binary and relay logs
can be checked at various points, allowing errors to
be detected whether they are caused by memory, disk
or network failures, or by the database itself.
Checksums can be implemented on a per-slave basis,
giving maximum flexibility in how and where it is
deployed.

Configuration parameters can be used to control if the
checksums should be generated (and recorded in the
binary log) and where they should be verified (as
shown in Figure 13: binlog-checksum1, master-verify-checksum2 and slave-sql-verify-
checksum3. If the checksum is included in the binary log of the master then it will always be verified
when the replication event is received by the slave.

If a mismatch is detected then replication is halted so that the DBA can fix the issue before resuming
replication.

Time-Delayed Replication
Time-Delayed Replication affords protection against
operational errors made on the master, for example
accidently dropping tables – allowing replication to be
suspended before the mistake has propagated to all
slaves – in turn, allowing the lost data to be recovered
from a slave. It also becomes possible to inspect the state
of a database without reloading a backup.

The user can define a time delay for events to be
replicated from a master to each slave, defined in
increments of one second, up to a maximum of 68 years –
this is specified using the MASTER_DELAY4 argument
when invoking the CHANGE MASTER command.

Time-Delayed Replication is implemented at a per-slave
level (via holding execution of the SQL_THREAD), so a
user could configure multiple slaves to apply replication
events immediately, and another slave to apply them only after a delay of (for example) 10 minutes,
therefore providing deployment flexibility - as illustrated in Figure 14. It’s important to note that the
slave still receives replicated events in as close to real-time as possible and that the delay is applied
as those events are read from the slave’s relay log.

1 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_binlog-checksum
2 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_master-verify-checksum
3 http://dev.mysql.com/doc/refman/5.6/en/replication-options-slave.html#option_mysqld_slave-sql-verify-checksum
4 http://dev.mysql.com/doc/refman/5.6/en/replication-delayed.html

Figure 13 Replication checksums

Figure 14 Replication delay on 1 slave

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 18 of 28

4 Replication Use Cases
There are a variety of technical and business reasons why you may choose to replicate your data
from one MySQL server to another. In this section we explore the various use cases and application
scenarios in which MySQL Replication can be leveraged.

Scale-Out

This is easily the most popular reason that users choose to implement replication. In a scale-out
topology the primary objective is spreading the workload across one or more slave servers in order to
improve performance.

It is simple for users to rapidly create multiple replicas of their database on commodity hardware to
elastically scale-out beyond the capacity constraints of a single instance, enabling them to serve
rapidly growing database workloads.

This is the opposite of scale-up, in which the idea is to increase the resources (typically RAM and
CPU) on the existing machine. Scaling-up can be thought of as a vertical, “fork-lift” approach to
satisfying the need for increased capacity.

In a scale-out architecture, reads and writes are split amongst the master and slave server(s).

Specifically, all writes (UPDATE,
INSERT, DELETE) are sent to the
master for execution and reads
(SELECT) are directed to the slave(s).
This allows the read workload that
was previously being executed on the
master server to instead use the
resources available on the slave
server(s). This allows for a more
efficient use of resources as now the
workload has been effectively spread
across more than one server.

The division of the writes and the
reads can be handled at different
layers in the system, such as within
the application (it maintains
connections to all of the servers and

Figure 16 Master with dual slaves

Figure 15 Scale-out with MySQL Replication

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 19 of 28

decides when to use a connection to the master versus one of the slaves) or in the database
connector.

As an example if using MySQL’s JDBC connector (Connector/J) then when connecting to the
database you can provide multiple servers in the connect-string, starting with the master and followed
by the slaves. If we take the configuration shown in Figure 16 (“black” is the master and “blue” and
“green” are slaves) then the application could connect to the “clusterdb” database by using the
connect-string jdbc:mysql:replication://black,blue,green/clusterdb. Once connected
in this way, Connector/J will route transactions to the appropriate server (master/slave) depending on
the value of the ReadOnly attribute of the connection (queried using connection.getReadOnly()
and written to using connection.setReadOnly(bool)).

As replication is asynchronous, if the application needs a read-only operation to use the latest values
from the database with absolute certainty then it should send it to the master rather than the slaves. In
the case of Connector/J that would mean running connection.setReadOnly(false).

High Availability

In this scenario, the idea is to replicate changes from a master to a slave server with the goal being to
fail-over to the slave server in the event that the master goes offline either due to an error, crash or for
maintenance purposes.

As with scaling out, the
selection of the correct server
can be implemented in various
ways. If for example you were
using Connector/J with the
configuration shown in Figure
17 (“black” is the master and
“blue” is the slave) then the
application can use
jdbc:mysql://black,blue
/clusterdb as the connect-
string; Connector/J would then send all operations to “black” while it is available and then failover to
“blue” when it wasn’t.

Geographic Replication

Using geographic replication data can be
replicated between two geographically
dispersed locations, typically over large
distances. Asynchronous replication will be
the preferred solution in this scenario based
on the potential impact of network latency.
An example in this case might include
replicating data from a central office in New
York to a regional office on San Francisco
allowing for queries to execute against a
local data store. Clearly this approach is also
ideal for providing disaster recovery in the
event that there is a catastrophe at one of the
sites (for example a loss of power or a
natural disaster).

Figure 18 Replication for Geographic Redundancy

Figure 17 Master-Slave replication configuration

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 20 of 28

Backup Database

To avoid any performance degradation or locking that a backup may cause on the master you may
choose to instead run the backup on a slave server instead. Note that when using MySQL Cluster or
MySQL Enterprise Backup with InnoDB, reads and writes can continue while the database is being
backed up.

Analytics

Many business intelligence or analytical queries can be resource intensive and take considerable time
to execute. For this use case, slaves can be created for the purpose of servicing these analytical
queries. In this configuration, the master suffers no performance impact by the execution of these
queries.

This can be especially useful with MySQL Cluster which is ideal for applications that predominantly
use Primary Key based reads and writes but can perform more slowly with very complex queries over
large data sets1. Simply replicate the MySQL Cluster data to a second storage engine (typically
InnoDB) and generate your reports there. This can be performed while simultaneously replicating to a
remote MySQL Cluster site for geographic redundancy – as shown in Figure 19.

Figure 19 Combining Replication Use Cases

1 The performance of joins was greatly improved by the addition of Adaptive Query Localisation in MySQL Cluster 7.2

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 21 of 28

5 Replication Topologies
MySQL supports a variety of replication topologies. Below we discuss some of these topologies, as
well as some which are supported with reservations.

Figure 20 Common MySQL Replication Topologies

Master to Slave

This is the most popular and easiest to configure and administer. In this topology we have two
servers, one master and one slave. All writes are performed on the master and reads can be split
between the master and the slave.

Master to Multiple Slaves

In this scenario we have multiple slaves attached to a single master. This enables a greater degree of
scale-out at the cost of increased administration.

Master to Slave(s) to Slave(s) (Hierarchical or Cascading Replication)

This configuration is an extension of either a master/slave or master/slaves configuration. In this case,
an additional slave or slaves are attached to a slave already attached to the root master server. The
slave(s) in the middle acts as both a master and slave. In this configuration, all writes are made to the
primary master.

Master to Master (Multi-Master)

In a master/master configuration two servers are combined in a pair so that they are both masters and
slaves to each other. Although this configuration yields the benefit on being able to write to either
system knowing that the change will eventually be replicated, it does increase the degree of
complexity in setup, configuration and administration. Additionally, unless you are using MySQL
Cluster, there is no conflict detection/resolution and so the application must ensure that it does not
update a row on one server while there is still a change to the same row on the other server that has
not been replicated yet.

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 22 of 28

Note that a single slave may only have a single master at any point in time; to simulate multiple
masters, the user would need to periodically switch between replication masters.

Multi-Master Ring
It is also possible to arrange a number of
MySQL Servers in a ring, allowing even
greater levels of scalability and
performance (assuming the application
can avoid sending conflicting updates to
the same row to different servers). MySQL
5.5 introduced a new filtering feature that
better handled cases where one server
fails while its updates are still being
replicated to the rest of the ring.

When using multi-master replication

together with auto-increment columns,
you should use the
auto_increment_offset and auto_increment_increment parameters on each server to
make sure that there are no duplicate values assigned. An example for 3 servers (black, blue &
green) is shown in Table 1.

Server auto_increment_increment auto_increment_offset Values
black 3 1 1,4,7…
blue 3 2 2,5,8…

green 3 3 3,6,9,...
Table 1 Avoid Conflicting Auto-Increment Values

Multi-Master to Slave (Multi-Source)
This replication topology is currently not supported by MySQL. In a mutli-master configuration a slave
essentially “serves two masters”, meaning that the slave receives the changes from more than one
master at the same time. To simulate multiple masters, the user would need to periodically switch
between replication masters.

MySQL Cluster allows multiple MySQL Servers to write to the same Cluster. Each server can act as a
slave in its own right with its own master and so it would be possible to configure this functionality if
required for an appropriate application.

6 Replication Internal Workflow
MySQL Replication is implemented by the master logging changes to data (DML: INSERT, UPDATE
and DELETE) and changes to object structures (DDL, i.e. ALTER TABLE, etc.), which are then sent
and applied to the slave(s) immediately or after a set time interval (when using Time Delayed
Replication).

Figure 22 illustrates the implementation of MySQL replication.

black:	
 192.168.0.31

blue:	
 192.168.0.34 green:	
 192.168.0.32

Figure 21 Multi-Master Replication Ring

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 23 of 28

With MySQL replication, the master writes updates to its binary log files and maintains an index of
those files in order to keep track of the log rotation. The binary log files serve as a record of updates
to be sent to slave servers. When a slave connects to its master, it determines the last position it has
read in the logs on its last successful update. The slave then receives any updates which have taken
place since that time. The slave subsequently blocks and waits for the master to notify it of new
updates.

From MySQL 5.6, the user has the option of using Global Transaction Identifiers (GTIDs) where each
slave records the GTIDs of all received transactions. When a slave connects it can then perform a
handshake with the master to identify all changes that still need to be replicated (see section 3 for
more details) and so knowledge of the current binary log position is not essential.

Replication Threads
A number of threads are used to implement the replication of updates from the master to the slave(s);
each of those threads are described here. If using MySQL Cluster then an additional thread is
involved - see Section 0 for details.

Binlog Dump Thread
The master creates this thread to send the binary log contents to the slave. A master that has multiple
slaves “attached” to it creates one binlog dump thread for each currently connected slave, with each
slave having its own I/O and SQL threads.

Slave I/O Thread
When a START SLAVE statement is issued on the slave, it creates an I/O thread, which connects to
the master and asks it to send the updates recorded in its binary logs. The slave I/O thread then
reads the updates that the master's binlog dump thread sends, and then copies them locally to the
slave’s relay log files.

Slave SQL Thread
The slave creates this thread (on the call to START SLAVE) to read the relay logs that were written by
the slave I/O thread and executes the updates contained in the relay logs. If using multi-threaded
slaves, multiple SQL threads will be created on the slave.

Figure 22 MySQL Replication workflow

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 24 of 28

Replication Log Files
During replication the MySQL server creates a number of files that are used to hold the relayed binary
log from the master, and records information about the current status and location within the relayed
log.

There are three file types used in the process by the slave:

relay log

The relay log on the slave contains events which have been read from the binary log of the master.
The events in the binary log are ultimately executed on the slave by the slave’s SQL thread.

master.info
The slave’s status and current configuration information is located in the master.info file. This file
contains the slave’s replication connectivity information, including the master’s host name, the login
credentials being used and the slave’s current position on the master’s binary log. This file is not
needed if master-info-repository is set to table.

relay-log.info
Status information concerning the execution point within the slave’s relay log can be found in the
relay-log.info file. This file is not needed if relay-log-info-repository is set to table.

On the master, there is the binary log and associated index file to track all updates to be replicated.

7 MySQL Fabric
MySQL Fabric is built around an extensible framework for managing farms of MySQL Servers.
Currently two features have been implemented - High Availability and scaling out using data sharding.
These features can be used in isolation or in combination.

MySQL Fabric has the concept of a HA group which is a pool of two or more MySQL Servers; at any
point in time, one of those servers is the Primary (MySQL Replication master) and the others are
Secondaries (MySQL Replication slaves). The role of a HA group is to ensure that access to the data
held within that group is always available.

While MySQL Replication allows the data to be made safe by duplicating it, for a HA solution two
extra components are needed and MySQL Fabric provides these:

• Failure detection and promotion - the MySQL Fabric process monitors the Primary within the HA

group and should that server fail then it selects one of the Secondaries and promotes it to be the
Primary (with all of the other slaves in the HA group then receiving updates from the new master).
Note that the connectors can inform MySQL Fabric when they observe a problem with the Primary
and the MySQL Fabric process uses that information as part of its decision making process
surrounding the state of the servers in the farm.

• Routing of database requests - When MySQL Fabric promotes the new Primary, it updates the

state store and that new routing information will be picked up by the connectors and stored in their
caches. In this way, the application does not need to be aware that the topology has changed and
that writes need to be sent to a different destination.

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 25 of 28

MySQL Fabric is beyond the scope of this paper but it is covered in detail in MySQL Fabric - A Guide
to Managing MySQL High Availability & Scaling Out1.

8 Differences when Replicating with MySQL Cluster
MySQL Cluster is a scalable, real-time, ACID-compliant transactional database, combining 99.999%
availability with the low TCO of open source. Designed around a distributed, multi-master architecture
with no single point of failure, MySQL Cluster scales horizontally on commodity hardware with
transparent auto-sharding to serve read and write intensive workloads, accessed via SQL and NoSQL
interfaces.

MySQL Cluster can be used as a pluggable storage engine for MySQL but the architecture is
fundamentally different from other MySQL storage engines (for example InnoDB and MyISAM) and
this impacts how replication works and is implemented. The architecture is shown in Figure 23. In
terms of the impact on replication, the key architectural feature is that the data is not stored within a
MySQL Server instance; instead the data is distributed over a number of Data Nodes. There is
synchronous replication between pairs of Data Nodes within the Cluster to provide High Availability –
note that this synchronous replication is not related to the replication described in this white paper.
Data can either be accessed directly from the Data Nodes (for example using the native C++ API) or
one or more MySQL Servers can be used to provide SQL access. Each MySQL server can read or
write any table row and the change is immediately visible to every other MySQL Server.

MySQL replication is typically used with MySQL Cluster to provide geographic redundancy – the
internal (synchronous) replication provides High Availability between data nodes co-located within the
Cluster and then MySQL (asynchronous) replication to a remote site guards against a catastrophic
site failure.

Figure 23 MySQL Cluster Architecture

How does this impact MySQL replication? Changes can be made from any MySQL Server or even
directly to the Data Nodes, and so a mechanism has been implemented whereby all changes get

1 http://www.mysql.com/why-mysql/white-papers/mysql-fabric-product-guide/

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 26 of 28

concentrated into the binary logs of one or more nominated MySQL Servers that then act as the
MySQL replication master(s). This is performed by the NDB Binlog Injector thread. This thread
ensures that all changes (regardless of where in the Cluster they get applied) are written to the binary
log in the correct order.

As shown in Figure 24 this provides the opportunity for a more robust replication system architecture.
Two MySQL Servers are shown where the binary log for each contains the exact same changes and
either of those servers can be used as the master to replicate these changes to one or more slave
MySQL Cluster deployments and/or to a MySQL Server which stores the data using the InnoDB or
MyISAM storage engines.

While the binary logs on each master should contain the
same changes, they are independent from each other.
To facilitate slave failover from one master to another,
the Cluster-wide ‘Epoch’ is used to represent the state
of a Cluster at a single point in time. These advanced
failover techniques are beyond the scope of this white
paper but further information can be found in the MySQL
Cluster Reference Guide1.

MySQL Cluster supports running MySQL replication in a
multi-master active-active configuration or even with
replication rings. Additionally, MySQL Cluster can
provide conflict detection or resolution to cover cases
where conflicting changes get written to the same rows
on these different masters. This is beyond the scope of
this white paper but details can be found in the MySQL
Cluster Reference Guide2.
MySQL Cluster releases run to a different schedule to
the main MySQL releases and so the latest MySQL
replication features will not always be available in the
latest MySQL Cluster release. For example, at the time of writing the latest Generally Available
release is MySQL Cluster 7.3 which uses a modified version of MySQL 5.6 for the MySQL Servers

When replicating from MySQL Cluster, row-based-replication (rather than statement-based-
replication) is always used.

9 Replication Monitoring with MySQL Enterprise Monitor
The MySQL Enterprise Monitor with Query Analyzer is a distributed web application that you deploy
on premise or in the cloud. The Monitor continually monitors all of your MySQL servers and
proactively alerts you to potential problems and tuning opportunities before they become costly
outages. It also provides you with MySQL expert advice on the issues it has found so you know
where to spend your time in optimizing your MySQL systems.

1 http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-failover.htm
2 http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-multi-master.html

Figure 24 Multiple Masters within a
Cluster

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 27 of 28

Figure 25 MySQL Enterprise Monitor

MySQL Enterprise Monitor makes it easier to scale-out and achieve high availability using the MySQL
Replication Monitor, providing auto-detection, grouping, documenting and monitoring of all
master/slave hierarchical relationships. Changes and additions to existing replication topologies are
also auto-detected and displayed, providing DBAs with instant visibility into newly implemented
updates.

As the Replication Advisor identifies a problem and sends out an alert, the DBA can use the alert
content along with the Replication Monitor to drill into the status of the affected master and/or slave.
Using the Replication Monitor and the expert advice from the Replication Advisor they can review the
current master/slave status and view metrics (such as Slave I/O, Slave SQL thread, seconds behind
master, last error, etc.) that are relevant to diagnosing and correcting any problems.

The Replication Monitor is designed and implemented to save DevOps time writing and maintaining
scripts that collect, consolidate and monitor similar MySQL Replication status and diagnostic data.

MySQL Enterprise Monitor also stores historical MySQL status data so that analysis of issues is
greatly simplified.

Figure 26 Replication Statistics in MySQL Enterprise Monitor

 Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Page 28 of 28

MySQL Enterprise Monitor is available as part of certain commercial MySQL editions as described at
http://www.mysql.com/products/.

10 Conclusion
MySQL Replication has been proven as an effective solution for the extreme scaling of database-
driven applications in some of the most demanding environments in web, mobile, social and cloud
applications

This whitepaper has discussed the business and technical advantages of deploying MySQL
Replication, as well as provide practical step-by-step guides to getting started.

As evidenced by the MySQL 5.6 release, replication is an area of active development, with continual
improvements in areas such as data integrity, performance and deployment flexibility.

11 Resources
MySQL 5.6 Replication – A Tutorial
http://www.mysql.com/why-mysql/white-papers/mysql-replication-introduction

MySQL 5.6 Download:
http://dev.mysql.com/downloads/mysql/

MySQL Replication user guide:
http://dev.mysql.com/doc/refman/5.6/en/replication.html

MySQL Cluster Replication Documentation:
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication.html

MySQL at Ticketmaster (heavy user of MySQL Replication):
http://www.mysql.com/customers/view/?id=684

Copyright © 2010, 2013, Oracle and/or its affiliates. MySQL is a registered trademark of Oracle in the U.S. and in
other countries. Other products mentioned may be trademarks of their companies.

