
Efficient protection against heap-based buffer
overflows without resorting to magic1

Yves Younan, Wouter Joosen, and Frank Piessens

DistriNet, Dept. of Computer Science, Katholieke Universiteit Leuven
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

{yvesy,wouter,frank}@cs.kuleuven.be

Abstract. Bugs in dynamic memory management, including for in-
stance heap-based buffer overflows and dangling pointers, are an im-
portant source of vulnerabilities in C and C++. Overwriting the man-
agement information of the memory allocation library is often a source
of attack on these vulnerabilities. All existing countermeasures with low
performance overhead rely on magic values or canaries. A secret value
is placed before a crucial memory location and by monitoring whether
the value has changed, overruns can be detected. Hence, if attackers are
able to read arbitrary memory locations, they can bypass the counter-
measure. In this paper we present an approach that, when applied to a
memory allocator, will protect against this attack vector without resort-
ing to magic. We implemented our approach by modifying an existing
widely-used memory allocator. Benchmarks show that this implementa-
tion has a negligible, sometimes even beneficial, impact on performance.

1 Introduction

Security has become an important concern for all computer users. Worms and
hackers are a part of every day Internet life. A particularly dangerous technique
that these attackers may employ is the code injection attack, where they are able
to insert code into the program’s address space and can subsequently execute it.
Vulnerabilities that could lead to this kind of attack are still a significant portion
of the weaknesses found in modern software systems, especially in programs
written in C or C++.

A wide range of vulnerabilities exists that allow an attacker to inject code.
The most well-known and most exploited vulnerability is the standard stack-
based buffer overflow: attackers write past the boundaries of a stack-based buffer
and overwrite the return address of a function so that it points to their injected
code. When the function subsequently returns, the code injected by the attackers
is executed [1].

1 Draft version of a paper presented at ICICS 2006 (http://discovery.csc.ncsu.
edu/ICICS06/, conference version available from Springer Verlag via http://dx.

doi.org/10.1007/11935308 27

However, several other vulnerabilities exist that allow an attacker to inject
code into an application. Such vulnerabilities can also occur when dealing with
dynamically allocated memory, which we describe in more detail in Section 2.
Since no return addresses are available in the heap, an attacker must overwrite
other data stored in the heap to inject code. The attacker could overwrite a
pointer located in this memory, but since these are not always available in heap-
allocated memory, attackers often overwrite the management information that
the memory allocator stores with heap-allocated data.

Many countermeasures have been devised that try to prevent code injection
attacks [2]. Several approaches try and solve the vulnerabilities entirely [3,4,5,6].
These approaches generally suffer from a substantial performance impact. Oth-
ers with better performance results have mostly focused on stack-based buffer
overflows [7,8,9,10,11].

Countermeasures that protect against attacks on dynamically allocated mem-
ory can be divided into four categories. The first category tries to protect the
management information from being overwritten by using magic values that
must remain secret [12,13] . While these are efficient, they can be bypassed if
an attacker is able to read or guess the value based on other information the
program may leak. Such a leak may occur, for example, if the program has a
’buffer over-read’ or a format string vulnerability. A second category focuses on
protecting all heap-allocated data by placing guard pages2 around them [14].
this however results in chunk size which are multiples of page sizes (which is 4
kb on IA32), which results in a large waste of memory and a severe performance
loss (because a separate guard page must be allocated every time memory is
allocated). A third category protects against code injection attacks by perform-
ing sanity checks to ensure that the management information does not contains
impossible values[15]. The fourth category separates the memory management
information from the data stored in these chunks. In this paper we propose an
efficient approach which falls in the fourth category. It does not rely on magic
values and can be applied to existing memory allocators.

To illustrate that this separation is practical we have implemented a proto-
type (which we call dnmalloc), that is publicly available [16]. Measurements of
both performance and memory usage overhead show that this separation can
be done at a very modest cost. This is surprising: although the approach is
straightforward, the cost compared to existing approaches in the first category
is comparable or better while security is improved.

Besides increased security, our approach also implies other advantages: be-
cause the often-needed memory management information is stored separately,
the pages that only hold the program’s data, can be swapped out by the oper-
ating system as long as the program does not need to access that data [17]. A
similar benefit is that, when a program requests memory, our countermeasure
will ensure that it has requested enough memory from the operating system
to service the request, without writing to this memory. As such, the operating

2 A guard page is page of memory where no permission to read or to write has been
set. Any access to such a page will cause the program to terminate.

system will defer physical memory allocation until the program actually uses it,
rather than allocating immediately (if the operating system uses lazy or opti-
mistic memory allocation for the heap [18]).

The paper is structured as follows: Section 2 describes the vulnerabilities and
how these can be used by an attacker to gain control of the execution flow using
a memory allocator’s memory management information. Section 3 describes the
main design principles of our countermeasure, while Section 4 details our proto-
type implementation. In Section 5 we evaluate our countermeasure in multiple
areas: its performance impact, its memory overhead and its resilience against ex-
isting attacks. In Section 6 we describe related work and compare our approach
to other countermeasures that focus on protecting the heap. Section 7 contains
our conclusion.

2 Heap-based vulnerabilities

Exploitation of a buffer overflow on the heap is similar to exploiting a stack-
based overflow, except that no return addresses are stored in this segment of
memory. Therefore, an attacker must use other techniques to gain control of the
execution-flow. An attacker could overwrite a function pointer or perform an
indirect pointer overwrite [19] on pointers stored in these memory regions, but
these are not always available. Overwriting the memory management information
that is generally associated with dynamically allocated memory [20,21,22], is a
more general way of exploiting a heap-based overflow.

Memory allocators allocate memory in chunks. These chunks typically con-
tain memory management information (referred to as chunkinfo) alongside the
actual data (chunkdata). Many different allocators can be attacked by overwrit-
ing the chunkinfo. We will describe how dynamic memory allocators can be
attacked by focusing on a specific implementation of a dynamic memory alloca-
tor called dlmalloc [23] which we feel is representative. Dlmalloc is used as the
basis for ptmalloc [24], which is the allocator used in the GNU/Linux operating
system. Ptmalloc mainly differs from dlmalloc in that it offers better support for
multithreading, however this has no direct impact on the way an attacker can
abuse the memory allocator’s management information to perform code injec-
tion attacks. In this section we will briefly describe some important aspects of
dlmalloc to illustrate how it can be attacked. We will then demonstrate how the
application can be manipulated by attackers into overwriting arbitrary memory
locations by overwriting the allocator’s chunkinfo using two different heap-based
programming vulnerabilities.

2.1 Doug Lea’s memory allocator

The dlmalloc library is a runtime memory allocator that divides the heap mem-
ory at its disposal into contiguous chunks. These chunks vary in size as the
various allocation routines (malloc, free, realloc, . . .) are called. An important
property of this allocator is that, after one of these routines completes, a free

chunk never borders on another free chunk, as free adjacent chunks are coalesced
into one larger free chunk. These free chunks are kept in a doubly linked list,
sorted by size. When the memory allocator at a later time requests a chunk of
the same size as one of these free chunks, the first chunk of that size is removed
from the list and made available for use in the program (i.e. it turns into an
allocated chunk).

Size of prev. chunk
Size of chunk1

User data

Size of chunk1
Size of chunk3

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk4

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Old user data

Forward pointer
Backward pointer

Lower addresses

Higher addresses

chunk3

chunk1 chunk4

chunk2

Fig. 1. Heap containing used and free chunks

All memory management information (including this list of free chunks) is
stored in-band. That is, the information is stored in the chunks: when a chunk
is freed, the memory normally allocated for data is used to store a forward and
backward pointer. Figure 1 illustrates what a typical heap of used and unused
chunks looks like. Chunk1 is an allocated chunk containing information about
the size of the chunk stored before it and its own size3. The rest of the chunk
is available for the program to write data in. Chunk3 is a free chunk that is
allocated adjacent to chunk1. Chunk2 and chunk4 are free chunks located in an
arbitrary location on the heap.

Chunk3 is located in a doubly linked list together with chunk2 and chunk4.
Chunk2 is the first chunk in the chain: its forward pointer points to chunk3 and
its backward pointer points to a previous chunk in the list. Chunk3 ’s forward
pointer points to chunk4 and its backward pointer points to chunk2. Chunk4 is

3 The size of allocated chunks is always a multiple of eight, so the three least significant
bits of the size field are used for management information: a bit to indicate if the
previous chunk is in use or not and one to indicate if the memory is mapped or not.
The last bit is currently unused.

the last chunk in our example: its forward pointer points to a next chunk in the
list and its backward pointer points to chunk3.

2.2 Attacks on dynamic memory allocators

Size of prev. chunk
Size of chunk1

Code to jump over
dummy

Size of chunk1
Size of chunk3

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk4

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Old user data

Forward pointer
Backward pointer

Injected Code

Dummy

Return address f0
Saved frame ptr f0

Local variable f0
Local variable f0

Lower addresses

Higher addresses

chunk4

chunk2

chunk1

chunk3

Stack

Fig. 2. Heap-based buffer overflow

Figure 2 shows what could happen if an array that is located in chunk1 is
overflowed: an attacker overwrites the management information of chunk3. The
size fields are left unchanged (although these can be modified if an attacker
desires). The forward pointer is changed to point to 12 bytes before function f0’s
return address, and the backward pointer is changed to point to code that will
jump over the next few bytes and then execute the injected code. When chunk1
is subsequently freed, it is coalesced together with chunk3 into a larger chunk.
As chunk3 is no longer a separate chunk after the coalescing, it must first be
removed from the list of free chunks (this is called unlinking). Internally a free
chunk is represented by a datastructure containing the fields depicted in chunk3
in Fig. 2. A chunk is unlinked as follows:

chunk3−>fd−>bk = chunk3−>bk
chunk3−>bk−>fd = chunk3−>fd

As a result, the value of the memory location that is twelve bytes (because of
the location of the field in the structure) after the location that fd points to will
be overwritten with the value of bk, and the value of the memory location eight
bytes after the location that bk points to will be overwritten with the value of fd.
So in the example in Fig. 2 the return address will be overwritten with a pointer
to code that will jump over the place where fd will be stored and will execute

code that the attacker has injected. This technique can be used to overwrite
arbitrary memory locations [20,21].

A similar attack can occur when memory is deallocated twice. This is called
a double free vulnerability [25].

3 Countermeasure Design

The main principle used to design this countermeasure is to separate manage-
ment information (chunkinfo) from the data stored by the user (chunkdata).
This management information is then stored in a separate contiguous memory
regions that only contains other management information. To protect these re-
gions from being overwritten by overflows in other memory mapped areas, they
are protected by guard pages. This simple design essentially makes overwriting
the chunkinfo by using a heap-based buffer overflow impossible. Figure 3 depicts
the typical memory layout of a program that uses a general memory allocator
(on the left) and one that uses our modified design (on the right).

Most memory allocators will allocate memory in the datasegment that could
be increased (or decreased) as necessary using the brk systemcall [26]. However,
when larger chunks are requested, it can also allocate memory in the shared
memory area 4 using the mmap5 systemcall to allocate memory for the chunk.
In Fig. 3, we have depicted this behavior: there are chunks allocated in both the
heap and in the shared memory area. Note that a program can also map files
and devices into this region itself, we have depicted this in Fig. 3 in the boxes
labeled ’Program mapped memory’.

In this section we describe the structures needed to perform this separation
in a memory allocator efficiently. In Section 3.1 we describe the structures that
are used to retrieve the chunkinfo when presented with a pointer to chunkdata.
In Section 3.2, we discuss the management of the region where these chunkinfos
are stored.

3.1 Lookup table and lookup function

To perform the separation of the management information from the actual
chunkdata, we use a lookup table. The entries in the lookup table contain point-
ers to the chunkinfo for a particular chunkdata. When given such a chunkdata
address, a lookup function is used to find the correct entry in the lookup table.

The table is stored in a map of contiguous memory that is big enough to
hold the maximum size of the lookup table. This map can be large on 32-bit
systems, however it will only use virtual address space rather than physical
4 Note that memory in this area is not necessarily shared among applications, it has

been allocated by using mmap
5 mmap is used to map files or devices into memory. However, when passing it the

MAP ANON flag or mapping the /dev/zero file, it can be used to allocate a specific
region of contiguous memory for use by the application (however, the granularity is
restricted to page size) [26].

Chunkinfo
region

Lookuptable

Stack

b
r
k

H
e
a
p

Guard page

Mapped
Chunk

Shared
libraries

Guard page

Text

Data

BSS

Heap

Shared
memory

Program
mapped
memory

Chunkdatab
r
k

H
e
a
p

Mapped
Chunk

s
h
a
r
e
d

m
e
m
o
r
y

Shared
libraries

Program
mapped
memory

Mapped
Chunk

Chunkinfo

Guard page

Program
mapped
memory

Chunkinfo
region

Chunkinfo

Chunkdata
Chunkdata

Chunkdata

s
h
a
r
e
d

m
e
m
o
r
y

Fig. 3. Original (left) and modified (right) process memory layout

memory. Physical memory will only be allocated by the operating system when
the specific page is written to. To protect this memory from buffer overflows in
other memory in the shared memory region, a guard page is placed before it. At
the right hand side of Fig. 3 we illustrate what the layout looks like in a typical
program that uses this design.

3.2 Chunkinfo regions

Chunkinfos are also stored in a particular contiguous region of memory (called a
chunkinfo region), which is protected from other memory by a guard page. This
region also needs to be managed, several options are available for doing this. We
will discuss the advantages and disadvantages of each.

Our preferred design, which is also the one used in our implementation and
the one depicted in Fig. 3, is to map a region of memory large enough to hold a
predetermined amount of chunkinfos. To protect its contents, we place a guard
page at the top of the region. When the region is full, a new region, with its
own guard page, is mapped and added to a linked list of chunkinfo regions.
This region then becomes the active region, meaning that all requests for new
chunkinfos that can not be satisfied by existing chunkinfos, will be allocated in
this region. The disadvantage of this technique is that a separate guard page is
needed for every chunkinfo region, because the allocator or program may have

stored data in the same region (as depicted in Fig. 3). Although such a guard
page does not need actual memory (it will only use virtual memory), setting the
correct permissions for it is an expensive system call.

When a chunkdata disappears, either because the associated memory is re-
leased back to the system or because two chunkdatas are coalesced into one, the
chunkinfo is stored in a linked list of free chunkinfos. In this design, we have
a separate list of free chunkinfos for every region. This list is contained in one
of the fields of the chunkinfo that is unused because it is no longer associated
with a chunkdata. When a new chunkinfo is needed, the allocator returns one
of these free chunkinfos: it goes over the lists of free chunkinfos of all existing
chunkinfo regions (starting at the currently active region) to attempt to find
one. If none can be found, it allocates a new chunkinfo from the active region.
If all chunkinfos for a region have been added to its list of free chunkinfos, the
entire region is released back to the system.

An alternative design is to map a single chunkinfo region into memory large
enough to hold a specific amount of chunkinfos. When the map is full, it can
be extended as needed. The advantage is that there is one large region, and
as such, not much management is required on the region, except growing and
shrinking it as needed. This also means that we only need a single guard page at
the top of the region to protect the entire region. However, a major disadvantage
of this technique is that, if the virtual address space behind the region is not
free, extension means moving it somewhere else in the address space. While the
move operation is not expensive because of the paging system used in modern
operating systems, it invalidates the pointers in the lookup table. Going over
the entire lookup table and modifying the pointers is prohibitively expensive. A
possible solution to this is to store offsets in the lookup table and to calculate
the actual address of the chunkinfo based on the base address of the chunkinfo
region.

A third design is to store the chunkinfo region directly below the maximum
size the stack can grow to (if the stack has such a fixed maximum size), and
make the chunkinfo region grow down toward the heap. This eliminates the
problem of invalidation as well, and does not require extra calculations to find a
chunkinfo, given an entry in the lookup table. To protect this region from being
overwritten by data stored on the heap, a guard page has to be placed at the top
of the region, and has to be moved every time the region is extended. A major
disadvantage of this technique is that it can be hard to determine the start of
the stack region on systems that use address space layout randomization [27].
It is also incompatible with programs that do not have a fixed maximum stack
size.

These last two designs only need a single, but sorted, list of free chunkinfos.
When a new chunkinfo is needed, it can return, respectively, the lowest or highest
address from this list. When the free list reaches a predetermined size, the region
can be shrunk and the active chunkinfos in the shrunk area are copied to free
space in the remaining chunkinfo region.

4 Prototype Implementation

Our allocator was implemented by modifying dlmalloc 2.7.2 to incorporate the
changes described in Section 3. The ideas used to build this implementation,
however, could also be applied to other memory allocators. Dlmalloc was chosen
because it is very widely used (in its ptmalloc incarnation) and is representative
for this type of memory allocators. Dlmalloc was chosen over ptmalloc because
it is less complex to modify and because the modifications done to dlmalloc to
achieve ptmalloc do not have a direct impact on the way the memory allocator
can be abused by an attacker.

Ptr. to chunkinfo
Lookuptable

Ptr. to chunkinfo

Ptr. to chunkinfo
...

Ptr. to chunkinfo

hash_next
Chunkinfo

size
prev_size

fd
bk

chunkdata

hash_next
Chunkinfo

size
prev_size

fd
bk

chunkdata

User data

Chunkinfo region

Chunkdata

User data

Chunkdata
Heap

Free chunkinfo
next-free

Chunkinfo region info
position

next_region
freelist

freecounter

Fig. 4. Lookup table and chunkinfo layout

4.1 Lookup table and lookup function

The lookup table is in fact a lightweight hashtable: to implement it, we divide
every page in 256 possible chunks of 16 bytes (the minimum chunksize), which is
the maximum amount of chunks that can be stored on a single page in the heap.
These 256 possible chunks are then further divided into 32 groups of 8 elements.
For every such group we have 1 entry in the lookup table which contains a pointer
to a linked list of these elements (which has a maximum size of 8 elements). As
a result we have a maximum of 32 entries for every page. The lookup table is
allocated using the memory mapping function, mmap. This allows us to reserve
virtual address space for the maximum size that the lookup table can become
without using physical memory. Whenever a new page in the lookup table is
accessed, the operating system will allocate physical memory for it.

We find an entry in the table for a particular group from a chunkdata’s
address in two steps:

1. We subtract the address of the start of the heap from the chunkdata’s ad-
dress.

2. Then we shift the resulting value 7 bits to the right. This will give us the
entry of the chunk’s group in the lookup table.

To find the chunkinfo associated with a chunk we now have to go over a
linked list that contains a maximum of 8 entries and compare the chunkdata’s
address with the pointer to the chunkdata that is stored in the chunkinfo. This
linked list is stored in the hashnext field of the chunkinfo (illustrated in Fig. 4).

4.2 Chunkinfo

A chunkinfo contains all the information that is available in dlmalloc, and adds
several extra fields to correctly maintain the state. The layout of a chunkinfo is
illustrated in Fig. 4: the prev size, size, forward and backward pointers serve the
same purpose as they do in dlmalloc, the hashnext field contains the linked list
that we mentioned in the previous section and the chunkdata field contains a
pointer to the actual allocated memory.

4.3 Managing chunk information

The chunk information itself is stored in a fixed map that is big enough to hold a
predetermined amount of chunkinfos. Before this area a guard page is mapped,
to prevent the heap from overflowing into this memory region. Whenever a new
chunkinfo is needed, we simply allocate the next 24 bytes in the map for the
chunkinfo. When we run out of space, a new region is mapped together with a
guard page.

One chunkinfo in the region is used to store the meta-data associated with
a region. This metadata (illustrated in Fig. 4, by the Chunkinfo region info
structure) contains a pointer to the start of the list of free chunks in the freelist
field. It also holds a counter to determine the current amount of free chunkinfos
in the region. When this number reaches the maximum amount of chunks that
can be allocated in the region, it will be deallocated. The Chunkinfo region info
structure also contains a position field that determines where in the region to
allocate the next chunkinfo. Finally, the next region field contains a pointer to
the next chunkinfo region.

5 Evaluation

The realization of these extra modifications comes at a cost: both in terms of
performance and in terms of memory overhead. To evaluate how high the per-
formance overhead of dnmalloc is compared to the original dlmalloc, we ran the
full SPEC R© CPU2000 Integer reportable benchmark [28] which gives us an idea

of the overhead associated with general purpose programs. We also evaluated
the implementation using a suite of allocator-intensive benchmarks which have
been widely used to evaluate the performance of memory managers [29,30,31,32].
While these two suites of benchmarks make up the macrobenchmarks of this sec-
tion, we also performed microbenchmarks to get a better understanding of which
allocator functions are faster or slower when using dnmalloc.

SPEC CPU2000 Integer benchmark programs

Program Description malloc realloc calloc free

164.gzip Data compression utility 87,241 0 0 87,237

175.vpr FPGA placement routing 53,774 9 48 51,711

176.gcc C compiler 22,056 2 0 18,799

181.mcf Network flow solver 2 0 3 5

186.crafty Chess program 39 0 0 2

197.parser Natural language processing 147 0 0 145

252.eon Ray tracing 1,753 0 0 1,373

253.perlbmk Perl 4,412,493 195,074 0 4,317,092

254.gap Computational group theory 66 0 1 66

255.vortex Object Oriented Database 6 0 1,540,780 1,467,029

256.bzip2 Data compression utility 12 0 0 2

300.twolf Place and route simulator 561,505 4 13,062 492,727

Allocator-intensive benchmarks

Program Description malloc realloc calloc free

boxed-sim Balls-in-box simulator 3,328,299 63 0 3,312,113

cfrac Factors numbers 581,336,282 0 0 581,336,281

espresso Optimizer for PLAs 5,084,290 59,238 0 5,084,225

lindsay Hypercube simulator 19,257,147 0 0 19,257,147
Table 1. Programs used in the evaluations

Table 1 holds a description of the programs that were used in both the macro-
and the microbenchmarks. For all the benchmarked applications we have also
included the number of times they call the most important memory allocation
functions: malloc, realloc, calloc6 and free (the SPEC R© benchmark calls pro-
grams multiple times with different inputs for a single run; for these we have
taken the average number of calls).

The results of the performance evaluation can be found in Section 5.1. Both
macrobenchmarks and the microbenchmarks were also used to measure the mem-
ory overhead of our prototype implementation compared to dlmalloc. In Section
5.2 we discuss these results. Finally, we also performed an evaluation of the se-
curity of dnmalloc in Section 5.3 by running a set of exploits against real world
programs using both dlmalloc and dnmalloc.

6 This memory allocator call will allocate memory and will then clear it by ensuring
that all memory is set to 0

Dnmalloc and all files needed to reproduce these benchmarks are available
publicly [16].

5.1 Performance

This section evaluates our countermeasure in terms of performance overhead.
All benchmarks were run on 10 identical machines (Pentium 4 2.80 Ghz, 512MB
RAM, no hyperthreading, Redhat 6.2, kernel 2.6.8.1).

SPEC CPU2000 Integer benchmark programs

Program DL r/t DN r/t R/t overh. DL mem DN mem Mem. overh.

164.gzip 253 ± 0 253 ± 0 0% 180.37 180.37 0%

175.vpr 361 ± 0.15 361.2 ± 0.14 0.05% 20.07 20.82 3.7%

176.gcc 153.9 ± 0.05 154.1 ± 0.04 0.13% 81.02 81.14 0.16%

181.mcf 287.3 ± 0.07 290.1 ± 0.07 1% 94.92 94.92 0%

186.crafty 253 ± 0 252.9 ± 0.03 -0.06% 0.84 0.84 0.12%

197.parser 347 ± 0.01 347 ± 0.01 0% 30.08 30.08 0%

252.eon 770.3 ± 0.17 782.6 ± 0.1 1.6% 0.33 0.34 4.23%

253.perlbmk 243.2 ± 0.04 255 ± 0.01 4.86% 53.80 63.37 17.8%

254.gap 184.1 ± 0.03 184 ± 0 -0.04% 192.07 192.07 0%

255.vortex 250.2 ± 0.04 223.6 ± 0.05 -10.61% 60.17 63.65 5.78%

256.bzip2 361.7 ± 0.05 363 ± 0.01 0.35% 184.92 184.92 0%

300.twolf 522.9 ± 0.44 511.9 ± 0.55 -2.11% 3.22 5.96 84.93%

Allocator-intensive benchmarks

Program DL r/t DN r/t R/t overh. DL mem DN mem Mem. overh.

boxed-sim 230.6 ± 0.08 232.2 ± 0.12 0.73% 0.78 1.16 49.31%

cfrac 552.9 ± 0.05 587.9 ± 0.01 6.34% 2.14 3.41 59.13%

espresso 60 ± 0.02 60.3 ± 0.01 0.52% 5.11 5.88 15.1%

lindsay 239.1 ± 0.02 242.3 ± 0.02 1.33% 1.52 1.57 2.86%
Table 2. Average macrobenchmark runtime and memory usage results for dlmalloc
and dnmalloc

Macrobenchmarks To perform these benchmarks, the SPEC R© benchmark
was run 10 times on these PCs for a total of 100 runs for each allocator. The
allocator-intensive benchmarks were run 50 times on the 10 PCs for a total of
500 runs for each allocator.

Table 2 contains the average runtime, including standard error, of the pro-
grams in seconds. The results show that the runtime overhead of our allocator are
mostly negligible both for general programs as for allocator-intensive programs.
However, for perlbmk and cfrac the performance overhead is slightly higher: 4%
and 6%. These show that even for such programs the overhead for the added
security is extremely low. In some cases (vortex and twolf) the allocator even

improves performance. This is mainly because of improved locality of manage-
ment information in our approach: in general all the management information
for several chunks will be on the same page, which results in more cache hits
[29]. When running the same tests on a similar system with L1 and L2 cache7

disabled, the performance benefit for vortex went down from 10% to 4.5%.

Microbenchmarks

Program DL r/t DL r/t R/t Overh.

loop: malloc 0.28721 ± 0.00108 0.06488 ± 0.00007 -77.41%

loop: realloc 1.99831 ± 0.00055 1.4608 ± 0.00135 -26.9%

loop: free 0.06737 ± 0.00001 0.03691 ± 0.00001 -45.21%

loop: calloc 0.32744 ± 0.00096 0.2142 ± 0.00009 -34.58%

loop2: malloc 0.32283 ± 0.00085 0.39401 ± 0.00112 22.05%

loop2: realloc 2.11842 ± 0.00076 1.26672 ± 0.00105 -40.2%

loop2: free 0.06754 ± 0.00001 0.03719 ± 0.00005 -44.94%

loop2: calloc 0.36083 ± 0.00111 0.1999 ± 0.00004 -44.6%
Table 3. Average microbenchmark runtime results for dlmalloc and dnmalloc

Microbenchmarks We have included two microbenchmarks. In the first mi-
crobenchmark, the time that the program takes to perform 100,000 mallocs of
random8 chunk sizes ranging between 16 and 4096 bytes was measured. After-
wards the time was measured for the same program to realloc these chunks to
different random size (also ranging between 16 and 4096 bytes). We then mea-
sured how long it took the program to free those chunks and finally to calloc
100,000 new chunks of random sizes. The second benchmark does essentially the
same but also performs a memset9 on the memory it allocates (using malloc,
realloc and calloc). The microbenchmarks were each run 100 times on a sin-
gle PC (the same configuration as was used for the macrobenchmarks) for each
allocator.

The average of the results (in seconds) of these benchmarks, including the
standard error, for dlmalloc and dnmalloc can be found in Table 3. Although
it may seem from the results of the loop program that the malloc call has an
enormous speed benefit when using dnmalloc, this is mainly because our imple-
mentation does not access the memory it requests from the system. This means
that on systems that use optimistic memory allocation (which is the default be-
havior on Linux) our allocator will only use memory when the program accesses
it.
7 These are caches that are faster than the actual memory in a computer and are used

to reduce the cost of accessing general memory [33].
8 Although a fixed seed was set so two runs of the program return the same results
9 This call will fill a particular range in memory with a particular byte.

To measure the actual overhead of our allocator when the memory is accessed
by the application, we also performed the same benchmark in the program loop2,
but in this case always set all bytes in the acquired memory to a specific value.
Again there are some caveats in the measured result: while it may seem that
the calloc function is much faster, in fact it has the same overhead as the malloc
function followed by a call to memset (because calloc will call malloc and then
set all bytes in the memory to 0). However, the place where it is called in the
program is of importance here: it was called after a significant amount of chunks
were freed and as a result this call will reuse existing free chunks. Calling malloc
in this case would have produced similar results.

The main conclusion we can draw from these microbenchmarks is that the
performance of our implementation is very close to that of dlmalloc: it is faster
for some operations, but slower for others.

5.2 Memory overhead

Our implementation also has an overhead when it comes to memory usage: the
original allocator has an overhead of approximately 8 bytes per chunk. Our
implementation has an overhead of approximately 24 bytes to store the chunk
information and for every 8 chunks, a lookup table entry will be used (4 bytes).
Depending on whether the chunks that the program uses are large or small,
our overhead could be low or high. To test the memory overhead on real world
programs, we measured the memory overhead for the benchmarks we used to test
performance, the results (in megabytes) can be found in Table 2. They contain
the complete overhead of all extra memory the countermeasure uses compared
to dlmalloc.

In general, the relative memory overhead of our countermeasure is fairly low
(generally below 20%), but in some cases the relative overhead can be very high,
this is the case for twolf, boxed-sim and cfrac. These applications use many very
small chunks, so while the relative overhead may seem high, if we examine the
absolute overhead it is fairly low (ranging from 120 KB to 2.8 MB). Applications
that use larger chunks have a much smaller relative memory overhead.

Exploit for Dlmalloc Dnmalloc

Wu-ftpd 2.6.1 [34] Shell Continues

Sudo 1.6.1 [35] Shell Crash

Sample heap-based buffer overflow Shell Continues

Sample double free Shell Continues
Table 4. Results of exploits against vulnerable programs

5.3 Security evaluation

In this section we present experimental results when using our memory allocator
to protect applications with known vulnerabilities against existing exploits.

Table 4 contains the results of running several exploits against known vul-
nerabilities when these programs were compiled using dlmalloc and dnmalloc
respectively. When running the exploits against dlmalloc, we were able to exe-
cute a code injection attack in all cases. However, when attempting to exploit
dnmalloc, the overflow would write into adjacent chunks, but would not overwrite
the management information, as a result the programs kept running.

These kinds of security evaluations can only prove that a particular attack
works, but it can not disprove that no variation of this attack exists that does
work. Because of the fragility of exploits, a simple modification in which an extra
field is added to the memory management information for the program would
cause many exploits to fail. While this is useful against automated attacks, it
does not provide any real protection from a determined attacker. Testing exploits
against a security solution can only be used to prove that it can be bypassed.
As such, we provide these evaluations to demonstrate how our countermeasure
performs when confronted with a real world attack, but we do not make any
claims as to how accurately they evaluate the security benefit of dnmalloc.

However, the design in itself of the allocator gives strong security guarantees
against buffer overflows, since none of the memory management information is
stored with user data. We contend that it is impossible to overwrite it using
a heap-based buffer overflow. This will protect from those attacks where the
memory management information is used to perform a code injection attack.

Our approach does not detect when a buffer overflow has occurred. It is,
however, possible to easily and efficiently add such detection as an extension
to dnmalloc. A technique similar to the one used in [12,13] could be added to
the allocator by placing a random number at the top of a chunk (where the
old management information used to be) and by mirroring that number in the
management information. Before performing any heap operation on a chunk,
the numbers would be compared and if changed, it could report the attempted
exploitation of a buffer overflow. A major advantage of this approach over [12]
is that it does not rely on a global secret value, but can use a per-chunk secret
value. While this approach would improve detection of possible attacks, it does
not constitute the underlying security principle, meaning that the security does
not rely on keeping values in memory secret.

Finally, our countermeasure (as well as other existing ones [15,12]) focuses
on protecting this memory management information, it does not provide strong
protection to pointers stored by the program itself in the heap. There are no ef-
ficient mechanisms yet to transparently protect these pointers from modification
through all possible kinds of heap-based buffer overflows. In order to achieve rea-
sonable performance, countermeasure designers have focused on protecting the
most targeted pointers. Extending the protection to more pointers without in-
curring a substantial performance penalty remains a challenging topic for future
research.

6 Related work

Many countermeasures for code injection attacks exist. In this section, we briefly
describe the different approaches that could be applicable to protecting against
heap-based buffer overflows, but will focus more on the countermeasures which
are designed specifically to protect memory allocators from heap-based buffer
overflows.

6.1 Protection from attacks on heap-based vulnerabilities

Countermeasures that protect against attacks on dynamically allocated memory
can be divided into three categories. The first category tries to protect the man-
agement information from being overwritten by using magic values that must
remain secret. While these are efficient, they can be bypassed if an attacker is
able to read or guess the value based on other information the program may
leak. Such a leak may occur, for example, if the program has a ’buffer over-read’
or a format string vulnerability. A second category focuses on protecting all
heap-allocated data by placing guard pages around them. this however results
in chunk size which are multiples of page sizes, which results in a large waste of
memory and a severe performance loss. A third category protects against code
injection attacks by performing sanity checks to ensure that the management
information does not contains impossible values.

Robertson et al. [12] designed a countermeasure that attempts to protect
against attacks on the ptmalloc management information. This is done by chang-
ing the layout of both allocated and unallocated memory chunks. To protect the
management information a checksum and padding (as chunks must be of double
word length) is added to every chunk. The checksum is a checksum of the man-
agement information encrypted (XOR) with a global read-only random value,
to prevent attackers from generating their own checksum. When a chunk is allo-
cated, the checksum is added and when it is freed, the checksum is verified. Thus,
if an attacker overwrites this management information with a buffer overflow,
a subsequent free of this chunk will abort the program because the checksum
is invalid. However, this countermeasure can be bypassed if an information leak
exists in the program that would allow the attacker to read the encryption key
(or the management information together with the checksum). The attacker can
then modify the chunk information and calculate the correct value of the check-
sum. The allocator would then be unable to detect that the chunk information
has been changed by an attacker.

This countermeasure is efficient, although other benchmarks were used to
test the performance overhead in [12], they report similar overhead to ours.

Dlmalloc 2.8.x also contains extra checks to prevent the allocator from writing
into memory that lies below the heap (this however does not stop it from writing
into memory that lies above the heap, such as the stack). It also offers a slightly
modified version of the Robertson countermeasure as a compile-time option.

ContraPolice [13] also attempts to protect memory allocated on the heap
from buffer overflows that would overwrite memory management information

associated with a chunk of allocated memory. It uses the same technique as
proposed by StackGuard [7], i.e. canaries, to protect these memory regions. It
places a randomly generated canary both before and after the memory region
that it protects. Before exiting from a string or memory copying function, a
check is done to ensure that, if the destination region was on the heap, the
canary stored before the region matches the canary stored after the region. If
it does not, the program is aborted. While this does protect the contents of
other chunks from being overwritten using one of these functions, it provides
no protection for other buffer overflows. It also does not protect a buffer from
overwriting a pointer stored in the same chunk. This countermeasure can also
be bypassed if the canary value can be read: the attacker could write past the
canary and make sure to replace the canary with the same value it held before.

Although no performance measurements were done by the author, it is rea-
sonable to assume that the performance overhead would be fairly low.

Recent versions of glibc [15] have added an extra sanity check to its allocator:
before removing a chunk from the doubly linked list of free chunks, the allocator
checks if the backward pointer of the chunk that the unlinking chunk’s forward
pointer points to is equal to the unlinking chunk. The same is done for the for-
ward pointer of the chunk’s backward pointer. It also adds extra sanity checks
which make it harder for an attacker to use the previously described technique
of attacking the memory allocator. However, recently, several attacks on this
countermeasure were published [36]. Although no data is available on the per-
formance impact of adding these lightweight checks, it is reasonable to assume
that no performance loss is incurred by performing them.

Electric fence [14] is a debugging library that will detect both underflows
and overflows on heap-allocated memory. It operates by placing each chunk in
a separate page and by either placing the chunk at the top of the page and
placing a guard page before the chunk (underflow) or by placing the chunk at
the end of the page and placing a guard page after the chunk (overflow). This
is an effective debugging library but it is not realistic to use in a production
environment because of the large amount of memory it uses (every chunk is
at least as large as a page, which is 4kb on IA32) and because of the large
performance overhead associated with creating a guard page for every chunk. To
detect dangling pointer references, it can be set to never release memory back to
the system. Instead Electric fence will mark it as inaccessible, this will however
result in an even higher memory overhead.

6.2 Alternative approaches

Other approaches that protect against the more general problem of buffer over-
flows also protect against heap-based buffer overflows. In this section, we give a
brief overview of this work. A more extensive survey can be found in [2]

Compiler-based countermeasures Bounds checking [3,4,5,6] is the ideal so-
lution for buffer overflows, however performing bounds checking in C can have

a severe impact on performance or may cause existing object code to become
incompatible with bounds checked object code.

Protection of all pointers as provided by PointGuard [37] is an efficient im-
plementation of a countermeasure that will encrypt (using XOR) all pointers
stored in memory with a randomly generated key and decrypts the pointer be-
fore loading it into a register. To protect the key, it is stored in a register upon
generation and is never stored in memory. However, attackers could guess the
decryption key if they were able to view several different encrypted pointers.
Another attack described in [38] describes how an attacker could bypass Point-
Guard by partially overwriting a pointer. By only needing a partial overwrite,
the randomness can be reduced, making a brute force attack feasible (1 byte: 1
in 256, 2 bytes: 1 in 65536, instead of 1 in 232).

Operating system-based countermeasures Non-executable memory [27,39]
tries to prevent code injection attacks by ensuring that the operating system
does not allow execution of code that is not stored in the text segment of the
program. This type of countermeasure can however be bypassed by a return-into-
libc attack [40] where an attacker executes existing code (possibly with different
parameters).

Address randomization [27,41] is a technique that attempts to provide se-
curity by modifying the locations of objects in memory for different runs of a
program, however the randomization is limited in 32-bit systems (usually to 16
bits for the heap) and as a result may be inadequate for a determined attacker
[42].

Library-based countermeasures LibsafePlus [43] protects programs from all
types of buffer overflows that occur when using unsafe C library functions (e..g
strcpy). It extracts the sizes of the buffers from the debugging information of a
program and as such does not require a recompile of the program if the symbols
are available. If the symbols are not available, it will fall back to less accurate
bounds checking as provided by the original Libsafe [9] (but extended beyond
the stack). The performance of the countermeasure ranges from acceptable for
most benchmarks provided to very high for one specific program used in the
benchmarks.

Execution monitoring Program shepherding [44] is a technique that will mon-
itor the execution of a program and will disallow control-flow transfers10 that
are not considered safe. An example of a use for shepherding is to enforce return
instructions to only return to the instruction after the call site. The proposed im-
plementation of this countermeasure is done using a runtime binary interpreter,
as a result the performance impact of this countermeasure is significant for some
programs, but acceptable for others.

10 Such a control flow transfer occurs when e.g. a call or ret instruction is executed.

Control-flow integrity [45] determines a program’s control flow graph before-
hand and ensures that the program adheres to it. It does this by assigning a
unique ID to each possible control flow destination of a control flow transfer.
Before transferring control flow to such a destination, the ID of the destination
is compared to the expected ID, and if they are equal, the program proceeds
as normal. Performance overhead may be acceptable for some applications, but
may be prohibitive for others.

7 Conclusion

In this paper we presented a design for existing memory allocators that is more
resilient to attacks that exploit heap-based vulnerabilities than existing allo-
cator implementations. We implemented this design by modifying an existing
memory allocator. This implementation has been made publicly available. We
demonstrated that it has a negligible, sometimes even beneficial, impact on per-
formance. The overhead in terms of memory usage is very acceptable. Although
our approach is straightforward, surprisingly, it offers stronger security than
comparable countermeasures with similar performance overhead because it does
not rely on the secrecy of magic values.

References

1. Aleph One: Smashing the stack for fun and profit. Phrack 49 (1996)
2. Younan, Y., Joosen, W., Piessens, F.: Code injection in C and C++ : A survey

of vulnerabilities and countermeasures. Technical Report CW386, Departement
Computerwetenschappen, Katholieke Universiteit Leuven (2004)

3. Austin, T.M., Breach, S.E., Sohi, G.S.: Efficient detection of all pointer and array
access errors. In: Proc. of the ACM ’94 Conf. on Programming Language Design
and Implementation, Orlando, FL (1994)

4. Jones, R.W.M., Kelly, P.H.J.: Backwards-compatible bounds checking for arrays
and pointers in C programs. In: Proc. of the 3rd Int. Workshop on Automatic
Debugging, Linköping, Sweden (1997)

5. Ruwase, O., Lam, M.S.: A practical dynamic buffer overflow detector. In: Proc. of
the 11th Network and Distributed System Security Symp., San Diego, CA (2004)

6. Xu, W., DuVarney, D.C., Sekar, R.: An Efficient and Backwards-Compatible Trans-
formation to Ensure Memory Safety of C Programs. In: Proc. of the 12th ACM
Int. Symp. on Foundations of Software Engineering, Newport Beach, CA (2004)

7. Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: StackGuard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proc. of the 7th USENIX Security Symp.,
San Antonio, TX (1998)

8. Etoh, H., Yoda, K.: Protecting from stack-smashing attacks. Technical report,
IBM Research Divison, Tokyo Research Laboratory (2000)

9. Baratloo, A., Singh, N., Tsai, T.: Transparent run-time defense against stack
smashing attacks. In: USENIX 2000 Technical Conf. Proc., San Diego, CA (2000)

10. Xu, J., Kalbarczyk, Z., Patel, S., Ravishankar, K.I.: Architecture support for
defending against buffer overflow attacks. In: Second Workshop on Evaluating and
Architecting System dependabilitY, San Jose, CA (2002)

11. Younan, Y., Pozza, D., Joosen, W., Piessens, F.: Extended protection against stack
smashing attacks without performance loss. In: Proc. of the Annual Computer
Security Apps. Conf., Miami, FL (2006)

12. Robertson, W., Kruegel, C., Mutz, D., Valeur, F.: Run-time detection of heap-
based overflows. In: Proc. of the 17th Large Installation Systems Administrators
Conf., San Diego, CA (2003)

13. Krennmair, A.: ContraPolice: a libc extension for protecting applications from
heap-smashing attacks. http://www.synflood.at/contrapolice/ (2003)

14. Perens, B.: Electric fence 2.0.5. http://perens.com/FreeSoftware/ (1999)
15. Free Software Foundation: GNU C library. http://www.gnu.org/software/libc

(2004)
16. Younan, Y.: Dnmalloc 1.0. http://www.fort-knox.org (2005)
17. Kamp, P.H.: Malloc(3) revisted. In: Proc. of the USENIX 1998 Anual technical

conference, New Orleans, LA (1998)
18. Summit, S.: Re: One of your c.l.c faq question. Comp.lang.C newsgroup (2001)
19. Bulba, Kil3r: Bypassing Stackguard and stackshield. Phrack 56 (2000)
20. anonymous: Once upon a free(). Phrack 57 (2001)
21. Kaempf, M.: Vudo - an object superstitiously believed to embody magical powers.

Phrack 57 (2001)
22. Solar Designer: JPEG COM marker processing vulnerability in netscape browsers.

http://www.openwall.com/advisories/OW-002-netscape-jpeg.txt (2000)
23. Lea, D., Gloger, W.: malloc-2.7.2.c. Comments in source code (2001)
24. Gloger, W.: ptmalloc. http://www.malloc.de/en/ (1999)
25. Dobrovitski, I.: Exploit for CVS double free() for linux pserver. http://seclists.

org/lists/bugtraq/2003/Feb/0042.html (2003)
26. Stevens, W.R.: Advanced Programming in the UNIX env. Addison-Wesley (1993)
27. The PaX Team: Documentation for PaX. http://pax.grsecurity.net (2000)
28. Henning, J.L.: Spec cpu2000: Measuring cpu performance in the new millennium.

Computer 33(7) (2000)
29. Grunwald, D., Zorn, B., Henderson, R.: Improving the cache locality of memory

allocation. In: Proc. of the ACM 1993 Conf. on Programming Language Design
and Implementation, New York, NY (1993)

30. Johnstone, M.S., Wilson, P.R.: The memory fragmentation problem: Solved? In:
Proc. of the 1st ACM Int. Symp. on Memory Management, Vancouver, BC (1998)

31. Berger, E.D., Zorn, B.G., McKinley, K.S.: Composing high-performance memory
allocators. In: Proc. of the ACM Conf. on Programming Language Design and
Implementation, Snowbird, UT (2001)

32. Berger, E.D., Zorn, B.G., McKinley, K.S.: Reconsidering custom memory allo-
cation. In: Proc. of the ACM Conf. on Object-Oriented Programming Systems,
Languages and Apps., Seattle, WA (2002)

33. van der Pas, R.: Memory hierarchy in cache-based systems. Technical Report
817-0742-10, Sun Microsystems, Sant a Clara, CA (2002)

34. Zen-parse: Wu-ftpd 2.6.1 exploit. Vuln-dev mailinglist (2001)
35. Kaempf, M.: Sudo exploit. Bugtraq mailinglist (2001)
36. Phantasmagoria, P.: The malloc maleficarum. Bugtraq mailinglist (2005)
37. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: PointGuard: protecting pointers

from buffer overflow vulnerabilities. In: Proc. of the 12th USENIX Security Symp.,
Washington, DC (2003)

38. Alexander, S.: Defeating compiler-level buffer overflow protection. ;login: The
USENIX Magazine 30(3) (2005)

39. Solar Designer: Non-executable stack patch. http://www.openwall.com (1998)
40. Wojtczuk, R.: Defeating Solar Designer’s Non-executable Stack Patch. Bugtraq

mailinglist (1998)
41. Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient approach

to combat a broad range of memory error exploits. In: Proc. of the 12th USENIX
Security Symp., Washington, DC (2003)

42. Shacham, H., Page, M., Pfaff, B., Goh, E.J., Modadugu, N., Boneh, D.: On the
Effectiveness of Address-Space Randomization. In: Proc. of the 11th ACM Conf.
on Computer and communications security, Washington, DC (2004)

43. Avijit, K., Gupta, P., Gupta, D.: Tied, libsafeplus: Tools for runtime buffer overflow
protection. In: Proc. of the 13th USENIX Security Symp., San Diego, CA (2004)

44. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure execution via program shep-
herding. In: Proc. of the 11th USENIX Security Symp., San Francisco, CA (2002)

45. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Proc.
of the 12th ACM Conf. on Computer and Communications Security, Alexandria,
VA (2005)

