
1

Institut
Experimentelles
Software Engineering

Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Fraunhofer
IESE

Lecture at Kaiserslautern University of Applied Sciences, winter term of 2007/08

Institut
Experimentelles
Software Engineering

Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Fraunhofer
IESE

Lecture at Kaiserslautern University of Applied Sciences, winter term of 2007/08

Secure software engineering

Dr. Holger Peine

Holger.Peine@iese.fraunhofer.de

Chapters 10: Process models

Secure Software Engineering: Process models

Slide 2Slide 2

"Secure Software Engineering" - Overview of this course
1. Introduction: IT security and software security

2. Fundamental notions and definitions of software security

� (Crash course on web application security
• Not really software engineering, but needed for many examples)

3. Vulnerabilities and attacks (2 lessons)

4. Security in the software development process

5. Security requirements elicitation (½ lesson)

6. Threat analysis (1½ lessons)

7. Security in architecture and design (2 lessons)

8. Secure coding (2 lessons)

9. Quality assurance: Inspections, testing, static analysis (1½ lessons)

10. Process models

11. Usability, conclusions

2

Secure Software Engineering: Process models

Slide 3Slide 3

Security should be integrated all over the development process

static system description,
security policy, threat analysis

threat analysis, architectural risk
analysis, patterns, design review

secure coding guidelines,
source code review

risk-based security testing,
final security review

Analysis

Design

Implementation

Test

...
...

Secure Software Engineering: Process models

Slide 4Slide 4

10. Process models

10.1 The tension between security and other development goals

3

Secure Software Engineering: Process models

Slide 5Slide 5

Security vs. other goals of software development
Security can be detrimental to other qualities /

� Performance

� Functionality

� Simplicity

� Usability

� Interoperability / reuse

� Low development effort

Security is often beneficial for correctness, safety and robustness ☺

Security pays off in the longer run (complete product life time) ☺
• Well, most probably so... Empirical numbers are still missing /

Secure Software Engineering: Process models

Slide 6Slide 6

Security conflicting with performance

� Security checks take time

• "Use several layers of defence" recommends more checks than absolutely
necessary; and more checks take even more time

� Security calls for few and simple external interfaces ("attack surface")

• More work needed for data conversion at external interfaces

� Security calls for dividing an application into mutually mistrusting,
secured components

• Inter-component invocations and data passing takes time

4

Secure Software Engineering: Process models

Slide 7Slide 7

Security conflicting with functionality

� General principle: The more functionality an application
offers, the easier some of that can be abused

� Security calls for few and simple external interfaces
("attack surface")

• More work needed for data conversion at external interfaces

� Security calls for avoiding "clever tricks" like self-modifying code or
offering a scripting interface to the internal functions of the application

� Security advises against compatibility with less secure software
(e.g. older versions of the same software)

Secure Software Engineering: Process models

Slide 8Slide 8

Security conflicting with simplicity

� Security checks introduces additional items (e.g. checks)
into the architecture and the code

� Also the non-security architecture is complicated by dividing an
application into mutually mistrusting, secured components

� Sometimes a general, elegant solution must be discarded for security
reasons

• E.g. make the application extensible by providing full scripting access to its
components

� Assigning different privileges to various system entities is harder to
manage

5

Secure Software Engineering: Process models

Slide 9Slide 9

Security conflicting with usability

� Using many different privileges is hard to understand

� Having to authenticate (especially repeatedly) is a nuisance

� Disallowing by default makes the user run into many
security failures until configuring the system according to their needs

� Avoiding compatibility with insecure software is a nuisance

� Systems trying to recognize attacks and to defend themselves will
invariably take some legal user actions for attacks

� ... and of course, anything which hurts performance may also hurt
usability /

Secure Software Engineering: Process models

Slide 10Slide 10

Security conflicting with interoperability / reuse

� Reusing components whose security properties are
not fully understood is discouraged

� Finding out and setting the least possible privilege for reused
components is difficult (or even impossible with black-box components)

� Avoiding unnecessary functionality and limiting the external interfaces of
componentes makes them less general and thus harder to reuse

6

Secure Software Engineering: Process models

Slide 11Slide 11

Security conflicting with low development effort

� A secure architecture takes longer to design

� Security checks and settings take time to implement

� Determining the least possible privilege takes time in each case

� Designing a custom solution takes longer then reusing a more general
(but potentially insecure) solution

� Determining the security properties of reused components takes time

• ... unless they have been properly documented ☺

Secure Software Engineering: Process models

Slide 12Slide 12

10. Process models

10.2 Seven touchpoints

7

Secure Software Engineering: Process models

Slide 13Slide 13

"Seven Touchpoints of Software Security"

Gary McGraw: Software Security (Addison-Wesley 2006)

In order of importance:

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases

6. Security requirements

7. Security operations

Secure Software Engineering: Process models

Slide 14Slide 14

Seven touchpoints mapped to this lecture

� Code review
• See inspections and static analysis

in chapter on quality assurance

� Architectural risk analysis
• See chapter on threat analysis

� Penetration testing, risk-based security tests
• See testing in chapter on quality assurance

� Abuse cases, security requirements
• See chapter on requirements elicititation

� Security operations
• This does not belong in a software development lecture

8

Secure Software Engineering: Process models

Slide 15Slide 15

10. Process models

10.3 Microsoft Secure Development Life Cycle (SDLC)

Secure Software Engineering: Process models

Slide 16Slide 16

Microsoft Security Development Life Cycle
� Introduced at Microsoft in 2002, continuously evolving since then

� Main activities, per phase:
• Requirements

- Consider security “up front”, assign Security Advisor (stays through
project)

• Design

- Architecture,TCB, least privilege, attack surface, threat model

• Development

- Code reviews, safer libraries, fuzz testing, static analysis tools

• Verification

- Penetration testing, other security testing, review legacy code

• Final security review of complete system

- Any errors found this late serve to improve the whole process

9

Secure Software Engineering: Process models

Slide 17Slide 17

MS-SDLC: Requirements phase

� Central (i.e. one per company) security team assigns
Security Advisor (SA)

• SA usually a member of the central security team

• One SA can serve several projects at a time

• SA will stay with a project through its Final Security Review

� Development team identifies security requirements

� SA reviews product plan, makes recommendations,
ensures resources allocated by management

� SA assesses security milestones and exit criteria

based on a slide by Steve Lipner, Microsoft

Secure Software Engineering: Process models

Slide 18Slide 18

MS-SDLC: Design phase

� Define and document security architecture

� Identify security critical components (“trusted base”)

� Identify design techniques (e.g., layering, managed code, least
privilege, attack surface minimization)

� Document attack surface and limit through default settings

� Create threat models (e.g., identify assets, interfaces, threats, risk),
mitigate threats through countermeasures

� Identify specialized test tools

� Define supplemental ship criteria due to unique product issues
(e.g., cross-site scripting tests)

� Confer with SA on questions
based on a slide by Steve Lipner, Microsoft

"TCB"

10

Secure Software Engineering: Process models

Slide 19Slide 19

MS-SDLC: Development phase

� Apply coding and testing standards (e.g., safe string handling)

� Apply fuzz testing tools (structured invalid inputs to
network protocol and file parsers)

� Apply static code analysis tools (to find, e.g., buffer overruns,
integer overruns, uninitialized variables)

� Conduct code reviews

based on a slide by Steve Lipner, Microsoft

Secure Software Engineering: Process models

Slide 20Slide 20

MS-SDLC: Verification phase

� Software functionally complete and enters Beta

� Because code complete, testing both new and legacy code

� Security Push

• Code reviews – focus on legacy code

• Penetration and other security testing

• Review design, architecture, threat models in light of new threats

based on a slide by Steve Lipner, Microsoft

11

Secure Software Engineering: Process models

Slide 21Slide 21

MS-SDLC: Final Security Review

� "From a security viewpoint, is this software ready to deliver to
customers?"

� 2 – 6 months prior to release; no more security-relevant change expected

� Completion of a questionnaire by the product team

� Interview by a security team member assigned to the FSR

� Review of bugs initially identified as security bugs, but on further analysis
were determined not to have impact on security

� Analysis of any newly reported vulnerabilities affecting similar software

� Additional penetration testing, possibly by outside contractors to
supplement the security team

based on a slide by Steve Lipner, Microsoft

Secure Software Engineering: Process models

Slide 22Slide 22

Microsoft SDLC experiences

� SDLC substantially reduced vulnerabilities in shipped software

• # security bulletins in Windows 2000 server, 450 days after release: 55

• # security bulletins in Windows 2003 server, 450 days after release: 17

� Introducing the whole SDLC at Microsoft caused moderate additional effort

• Michael Howard, program manager on Microsoft's security team:
"We estimate it on the order of [a] 12% increase in development cost"

• Steve Lipner (SDLC book author): 20% on 1st iteration, 10% on later iterations

� MS SDLC designed for larger projects with many person-years of effort

• Many mandatory roles, activities and tools (e.g. MS PreFast): Only for MS?

• Tailorable? Microsoft says "it's NOT all-or-nothing"

12

Secure Software Engineering: Process models

Slide 23Slide 23

10. Process models

10.4 OWASP CLASP

Secure Software Engineering: Process models

Slide 24Slide 24

Only these two covered in
this lecture: CLASP's
scope is much wider!

CLASP process

� "Comprehensive Light-weight Application Security Process"
• Orginally commercial consulting by SecureSoftware Inc., now free: OWASP.org

• Either stand-alone process or plug-in to Rational Unified Process (RUP)

• Rather a toolbox of process pieces than one unified process: Tailorable!

� Seven top-level activities, each with detailed instructions and templates
1. Institute awareness programs

2. Perform application assessments

3. Capture security requirements

4. Implement secure development practices

5. Build vulnerability remediation procedures

6. Define and monitor metrics

7. Publish operational security guidelines

13

Secure Software Engineering: Process models

Slide 25Slide 25

� Five views:

1. Concepts

2. Roles

� Activities

3. Select subset

4. Perform
those

5. Vulnerabities

Secure Software Engineering: Process models

Slide 26Slide 26

CLASP: Activities and roles (1)
� Institute security awareness program (Project Manager)

� Monitor security metrics (Project Manager, Integrator)

� Manage certification process (Project Manager)

� Specify operational environment (Requirements Specifier)

� Identify global security policy (Requirements Specifier)

� Identify user roles and requirements (Requirements Specifier)

� Detail misuse cases (Requirements Specifier)

� Perform security analysis of requirements (Security Auditor)

� Document security design assumptions (Software Architect)

� Specify resource-based security properties (Software Architect)

Various
subsets
possible:
Can start

small

Various
subsets
possible:
Can start

small

14

Secure Software Engineering: Process models

Slide 27Slide 27

CLASP: Activities and roles (2)

� Apply security principles to design (Designer)

� Research and assess security solutions (Designer)

� Build information labeling scheme (Designer, UI Designer)

� Design UI for security functionality (UI Designer, Designer)

� Annotate class designs with security properties (Designer)

� Perform security functionality usability testing (UI Designer)

� Manage System Security Authorization Agreement (Security Auditor)

� Specify database security configuration (Database Designer)

� Perform security analysis of system design (Security Auditor, Designer)

� Integrate security analysis into build process (Integrator) role "auditor" performs
inspections of various

documents

Secure Software Engineering: Process models

Slide 28Slide 28

CLASP: Activities and roles (3)
� Implement and elaborate resource policies (Implementer, Designer)

� Implement interface contracts (Implementer)

� Perform software security fault injection testing (Implementer)

� Address reported security issues (Implementer, Designer)

� Perform source-level security review (Security Auditor, Implementer)

� Identify and implement security tests (Test Analyst, Security Auditor)

� Verify security attributes of resources (Tester)

� Perform code signing (Integrator)

� Build operational security guide (Implementer)

� Manage security issue disclosure process (Project Manager, Implementer,
Designer)

15

Secure Software Engineering: Process models

Slide 29Slide 29

Numerous resources included in CLASP

� More than 100 "problem types"
• Vulnerability categories similar to CWE (actually: mostly part of CWE now)

• Used as background information referred to in many guidelines

- Ex. Guideline "Use prepared statements for DB access" refers to problem
type "SQL Injection" which explains this issue in depth

� List of common security requirements (for copying from)

� Threat analysis guide
• Including checklists and a list of common threats (referring to problem types)

� Checklists for testing, for assessing COTS (commercial standard sw.)

� Visual modeling notations
• Simple ad hoc notation, plus a UML extension

Secure Software Engineering: Process models

Slide 30Slide 30

10. Process models

10.5 Agile processes and security

16

Secure Software Engineering: Process models

Slide 31Slide 31

Agile processes
� "Agile manifesto" (2001): Declaration of 12 principles for software

development processes, operationalizing the following 4 weighting
statements:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan ("agile"!)

� Several process models are subsumed under "agile":

• Extreme Programming (XP), SCRUM, Pragmatic Programming, DSDM,
Adaptive Software Development, Crystal, Feature-Driven Development, ..

� Gained lots of publicity in early 2000s

• Including clever PR à la "finally someone listens to the developers"

Secure Software Engineering: Process models

Slide 32Slide 32

12 Agile principles (1)

1. Satisfy the customer through early and continuous delivery of valuable
software.

2. Welcome changing requirements, harness change for the customer's
competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Trust them to get the job
done.

6. Face-to-face conversation is the best means of communication.

17

Secure Software Engineering: Process models

Slide 33Slide 33

12 Agile principles (2)

7. Working software is the primary measure of progress.

8. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10.Simplicity – the art of maximizing the amount of work not done – is
essential.

11.The best architectures, requirements, and designs emerge from self-
organizing teams.

12.At regular intervals, the team reflects on how to become more effective.

Secure Software Engineering: Process models

Slide 34Slide 34

Agile security?

� Agile processes rely strongly on each developer's compentence.
Not all developers, however, are competent in security (today).

� Agile processes often lack explicit design activities ("emergent design").
This local focus may miss many design-level vulnerabilities.

� Agile processes are highly iterative. Incorporating frequent security
review activities could be an organizational problem when the reviewers
are not part of the development team (as they should be).

• Possibly do reviews only after first and last iteration?

� XP is feature-driven (user stories, coding to the tests).
Security, however, is not a feature, and might be missed that way.

� XP's pair programming might work well for seamless source code
security reviews – provided that developers are security sensitive.

18

Secure Software Engineering: Process models

Slide 35Slide 35

10. Process models

10.6 Integration of security into the development process

Secure Software Engineering: Process models

Slide 36Slide 36

Security and various development processes

� Adding security to a process does not require
a stricly sequential process ("waterfall model")

• This lecture follows a classic waterfall order – but
this is only because a lecture is a sequential activity ☺

• Any software development process will contain phases of analysis, of design,
of implementation and of quality assurance

- Only the order and granularity will vary
- The order and granularity of the corresponding security activities can

vary along

� Caveat: Processes without explicit design ("emergent design", code-
centric processes) will have trouble to avoid vulnerabilities which arise
at design time and cannot be pinned down to specific pieces of code

• Applies to most "agile processes"

19

Secure Software Engineering: Process models

Slide 37Slide 37

Incremental introduction of security

� Incremental introduction is preferable even if the goal is a
"security-complete process"

• Progressing step by step will help with the necessary fine-tuning of the
security activities that is usually necessary to fit well with the existing process

� Source code inspections and threat analysis are usually recommended
as the first steps

� Individual measures help

� Combined measures may help even more, e.g. ...
• Testing more effective and efficient if based on threat analysis: Won't omit

tests for identified attacks, won't test any irrelevant attack

• Programming guidelines can be fine-tuned to a specific developer force's
needs based on errors found during source code inspections or tests

Secure Software Engineering: Process models

Slide 38Slide 38

Ch. summary: Security in the software development process

� ... should (and can) be applied in all activities of the process

• Analysis, design, implementation, quality assurance

� ... is possible with most processes without major disruptions

• Some processes offer more hooks for security than others, but all can profit

• Amount of "paperwork" can be kept proportional to the "rest" of the process

� ... can (and should) be introduced incrementally

� ... takes initially more effort, but that may expected to pay off over
complete product life time

• Hard numbers from empirical studies still missing

� A few detailed process models for secure software engineering exist

• OWASP CLASP, Microsoft SDLC; some less comprehensive others

