
1

Institut
Experimentelles
Software Engineering

Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Fraunhofer
IESE

Lecture at Kaiserslautern University of Applied Sciences, winter term of 2007/08

Institut
Experimentelles
Software Engineering

Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

Fraunhofer
IESE

Lecture at Kaiserslautern University of Applied Sciences, winter term of 2007/08

Secure software engineering

Dr. Holger Peine

Holger.Peine@iese.fraunhofer.de

Chapter 8: Secure coding – part 1

Secure Software Engineering: Secure coding

Slide 2Slide 2

"Secure Software Engineering" - Overview of this course
1. Introduction: IT security and software security

2. Fundamental notions and definitions of software security

� (Crash course on web application security
• Not really software engineering, but needed for many examples)

3. Vulnerabilities and attacks (2 lessons)

4. Security in the software development process

5. Security requirements elicitation (½ lesson)

6. Threat analysis (1½ lessons)

7. Security in architecture and design (2 lessons)

8. Secure coding (2 lessons)

9. Quality assurance: Inspections, testing, static analysis (1½ lessons)

10. Process models

11. Usability, conclusions

2

Secure Software Engineering: Secure coding

Slide 3Slide 3

Security at the source code level

� Arguably, the majority of vulnerabilities arise during coding
• Ever more complex programming platforms with their own problems

• Many implicit assumptions about the platform that can be subverted

• Secure designs can be refined to insecure implementations

� Be an expert about your programming platform‘s problems
• Needs deep understanding and learning long lists of „Do‘s“/„Don‘t“s

(no short cuts available here /) – way longer than we can enumerate here

• Choose a (more) secure platform right away (e.g., avoid C)

� Make the above expertise easily accessible and documented
• Coding guidelines (general, API-specific, company-specific)

• Integrate advice and guideline adherence checking with the IDE

GetInput(input);
strcpy(buf, input);

Secure Software Engineering: Secure coding

Slide 4Slide 4

8. Secure coding

8.1 Advice for specific programming languages

8.1.1 C

3

Secure Software Engineering: Secure coding

Slide 5Slide 5

C's main problem: Manual memory management

� In C, there are three classes of memory available for program objects:

� Static: Allocated at program start, valid until program termination (global object)
• struct ComplexObject x; // defined outside any function

� Automatic: Objects local to a function, implicitly allocated on function entry,
implicitly deleted on function exit

• function f() {
ComplexObject y; // y is valid now
...

} // y is no longer valid now

� Dynamic: Must be manually allocated and deleted; remains valid until deleted
• ComplexObj* cp = malloc(sizeof(ComplexObj)); *cp = z; free(cp);

• ... makes cp point to a memory block large enough to hold one CObj; *cp is that CObj

Secure Software Engineering: Secure coding

Slide 6Slide 6

Double free errors

� Deleting a dynamically allocated object marks its memory as free again

• Implemented by the C run-time system: Adds the block to the list of free blocks

� Deleting the same pointer more than one time will corrupt the memory
management system

• if (condition) {
free(p);

}
DoSomeThings();
free(p); // double free if condition was true

• Depending on the run-time system implementation, the various effects may
occur, including buffer overflows /

� For each type, have a clear structure regarding who creates and who
deletes objects

...

4

Secure Software Engineering: Secure coding

Slide 7Slide 7

Memory leaks

� The opposite of the double free error: No free() called at all

• int* p = malloc(...);

... // use *p

p = q; // forgot to call free(p)
// now the old *p object can no longer be accessed (nor deleted!)

� Forgetting to delete an object that is no longer needed may exhaust the
available memory ("leak" memory)

• ... because C has no implicit garbage collection like Java, C#, PHP etc.

� If the memory leak may be triggered by an attacker, a denial-of-service
attack by memory exhaustion is possible

� Again: Have a clear structure for object creation and deletion

Secure Software Engineering: Secure coding

Slide 8Slide 8

Accessing deleted memory

� Accessing a dynamic object that has been deleted before may result in
unpredictable effects if the block has been allocated again meanwhile

• int* p = malloc(...);
... // use *p
free(p);
... // other things, including new malloc() calls
x = *p; // reading from deleted memory
*p = 5; // writing to deleted memory

� Reading will return unpredictable data from another, unrelated place

� Writing will destroy the data in another, unrelated place of the program

� Again, many such errors can be exploited by an attacker

� Again: Have a clear structure for object creation and deletion

5

Secure Software Engineering: Secure coding

Slide 9Slide 9

The C model of a process's virtual address space

� Fundamental feature (flaw?):
C programs may access any*
arbitrary byte in its address space

(char)0x4EF71208 = i;

� A (malfunctioning) program can
write arbitrary data to any* place
in its address space

• including places not meant for
data, but for execution control

� Strict handling of memory access
crucial for execution integrity0x00..00

0xFF..FF

environ[]

code ("TEXT")

argv[]

initialized global data ("DATA")

non-init'd global data ("BSS")

stack

heap (i.e. malloc'd data)

Secure Software Engineering: Secure coding

Slide 10Slide 10

A simple buffer overflow example

� Cause: Writing too much data into a memory buffer of limited size

void f(char* data) {
char buf[512]; // the buffer
strcpy(buf,data); // overflows if data > 512 bytes

}

� Effect: The "overspilling" part of the input bytes (data[512+])
overwrites the program memory (anything behind buf[511]in memory)

� Possible consequences
• In general: The program shows arbitrary, mysterious behavior

• In practice: With most data[], the program simply crashes

• But what if the overflow data[] is chosen very carefully, even maliciously?

6

Secure Software Engineering: Secure coding

Slide 11Slide 11

Exploiting a buffer overflow to inject attack code

� A buffer overflow is exploitable if the overflow data can be influenced
(usually: provided as input data) by an attacker

void f(char* attackerinput) {
char buf[512];
strcpy(buf, attackerinput);

}

� Exploitation for code injection

1. By providing attack code bytes as attackerinput, an attacker can
inject code of their choosing into the program's address space

2. By overwriting a code pointer to point to the injected code, the attacker can
redirect the program's flow of control into that code and take over control

• Problem: Must know the address of the buffer in order to point to it

Secure Software Engineering: Secure coding

Slide 12Slide 12

f(1, 2);

void f(int x, y) {

int i, j;

char buf[512];

...
}

stack

buffer
overflow

attack

Stack buffer overflow: Overwrite a function's return address

f()'s parameter (y)

f()'s parameter (x)

local variable 1 (i)

local variable 2 (j)

local var. 3 (buf[])
overflowing buf
with too many
bytes of data[]

attack code

pointer to attack code

...

stack frame of this invocation of f()

stack frame
of f()'s caller

return address where
to continue after f()

Instruction where
f was called

code
pointer

7

Secure Software Engineering: Secure coding

Slide 13Slide 13

Various targets for buffer overflows with varying danger
� Stack

• Pointer and buffer easy to guess (stack layout relatively predictable)

� Heap
• Function pointers at known offsets in dynamically allocated objects

- C++: Function pointer in nearly every object (_vtable pointer!)

• Difficult (but possible) to predict address of an object or a buffer on the heap

� Internal data of the run-time system
• Global offset table (GOT), GNU C++ .ctors/.dtors lists, exception handlers, ...

• Many code pointers, often predictable buffer addresses

� Data and BSS segment: Rarely code pointers here (though easy to predict)

� (Code segment: impossible – no data buffers here, and often not writable)

Secure Software Engineering: Secure coding

Slide 14Slide 14

Defence against overflow attacks: Programmer level
� Don't use C ☺

• Sometimes impossible (e.g., only C compiler available for target hardware)

� Careful programming?

• Always track the size and non-allocated rest size of each buffer

• Use strncpy() instead of strcpy() (with correct n parameter!) etc.

• Not very reliable /

� Use data structures with implicit bounds checking instead of raw arrays

• In C++: vector<int>::at instead of int[], string instead of char[]

• In C: Use a better string library than libc, e.g. SafeStr, MS Strsafe

• Small performance penalty implied in all cases

8

Secure Software Engineering: Secure coding

Slide 15Slide 15

Defence against overflow attacks: System level
� C compilers or C library with built-in stack checking

• StackGuard / StackShield / SSP compiler extensions, VC++.NET /GS, libsafe library

• All leave some loopholes open (e.g. frame pointer overwriting, "return-to-libc")

� Non-executable stack segments
• Needs OS and hardware support for efficiency (only on 64 bit, e.g. Itanium, AMD64)

� Random positioning of segments in address space
• Repositioning code needs position-independent code Ö recompilation, loss of efficiency

• Tricks with relative code pointers ("trampoline") still possible

� Static analysis tools to detect overflows in source code
• Free: Flawfinder, ITS4, RATS, ... rather immature, lots of false alarms

• Commercial: Fortify, Coverity, Klocwork, etc.: More mature, unclear abilities, expensive

Secure Software Engineering: Secure coding

Slide 16Slide 16

C format strings
� C's standard printing function printf uses a "format string" as its first

parameter, controlling how the other parameters will be interpreted
• Ex. printf("%s%d ", msg, i); prints msg as a string, then i as a

decimal, then a blank
• printf cannot check that the right number and type of parameters are

actually present – it simply uses whatever "parameters" it finds on the stack!

� A %n in a format string will make printf write a number to a
memory(!) address designated by an integer pointer parameter in the
parameter position matching the %n

• The number written is the number of characters printed so far (meant for
debugging complex format strings)

• Ex. printf("%s%n", msg, &x); prints a string msg, then writes to x

• If no &x parameter given, printf writes to an address found on the stack

9

Secure Software Engineering: Secure coding

Slide 17Slide 17

C Format string attack
� Programmers are lazy and sometimes simply write printf(msg)

• Harmless if msg contains no % formatting characters

� If the format string comes from an attacker, the attacker may supply a
very long format string containing %n in certain positions

• Ex. "aaaa%naaaaaaaaaaa%n..." writes the bytes 4 and 10 to memory

• Often, the attacker succeeds to write arbitrary bytes to arbitrary addresses /

� May also read from arbitrary addresses, starting at the current stack
• %x...%x prints (as hex bytes) many bytes on the stack and upwards

� Precaution: Don't use untrusted input for a printf format string
• Always use a format string with printf

• Best use constant format strings if at all possible

Secure Software Engineering: Secure coding

Slide 18Slide 18

C++ security pitfalls
� C++ is a superset of C

• If you use C features like raw memory arrays, pointer arithmetic,
format strings etc., you will have the same vulnerabilities, too

� C++ has a vector<Type> parameterized class: Safer than C arrays ☺

• C++ has a string class that is safer than C character arrays

� C++ still has pointers, and its library ("STL") is largely pointer-based /

� Function pointers are more much frequent than in C /

• e.g. implicit _vtable pointer in every polymorphic object

• More targets to redirect control to injected code (no matter where that code is)

� If you use C++ with extreme discipline and rewrite all libraries, it could
probably be secure – but the result would no longer be regarded as C++

10

Secure Software Engineering: Secure coding

Slide 19Slide 19

8. Secure coding

8.1 Advice for specific programming languages

8.1.2 Java

Secure Software Engineering: Secure coding

Slide 20Slide 20

The good things about Java (regarding security)
� Type-safe

• Compiler, byte code verifier (load time), run-time checks (type, bounds, ...)

Ö No way to forge data (or even code)

� Garbage collection (automatic memory management)

• No memory leaks, double deletions, accesses to deleted memory

� Support for running untrusted code

• SecurityManager, "sandbox", name spaces / class loaders

� Enormous wealth of security APIs

• All sorts of crypto, identity mgmt / PKI, authentication & authorization, XML /
web service security, ... much more than this lecture can even mention

11

Secure Software Engineering: Secure coding

Slide 21Slide 21

Authorization in Java: The SecurityManager

� If a SecurityManager is active (NOT the default!), any security-
relevant resource access will automatically be checked by it

• Checks invisible to the programmer if they succeed

• SecurityManager throws a SecurityException if a check fails

� public FileInputStream(File file) throws ... {
String fname = (file != null) ? file.getPath() : null;
SecurityManager secMgr = System.getSecurityManager();
if (secMgr != null) { // SecurityManager is active

secMgr.checkRead(fname);
// throws SecurityException if no permissions to open this file

}
... // physically open the file

}

Secure Software Engineering: Secure coding

Slide 22Slide 22

Policies in Java
� SecurityManager is the policy enforcement point (only one per JVM)

� Policy file defined in a text file as a list of permission grants as follows:

• grant [signedBy <signer>] [codeBase <code source>] {
permission <permission class> [<resource> [<action>]] ; };*

• Ex.

- grant codeBase "http://someserver/myjar.jar" {
permission java.util.PropertyPermission "file.encoding", "read"; } ;

- grant signedBy "John Doe" {
permission java.io.FilePermission "myfile.txt", "read, write"; }

� Subjects: Code source, signer (when using JAAS, also logged-in user)

� Objects: Anything that has a permission class associated to it

12

Secure Software Engineering: Secure coding

Slide 23Slide 23

Running untrusted Java code

� Use a SecurityManager (implies using a policy)

• java -Djava.security.manager OR

• System.setSecurityManager(new SecurityManager());

• You may create your own SecurityManager by subclassing it

� Use a policy allowing only what the untrusted code really needs

• Custom permission classes possible by extending existing ones

• java -Djava.security.policy=my-policy.txt

� Use the bytecode verifier (OFF by default for code compiled with JDK ≤ 1.4!)

• Checks code at load time for "well-behavedness"

• java -verify

Secure Software Engineering: Secure coding

Slide 24Slide 24

Name space separation for security

� Each code source constitutes a name space of its own

• Implemented by using one class loader per code source

• To prevent smuggling code across a trust boundary by class spoofing

• Equal-named classes may coexist if in different name spaces

� Don't compare classes by name

• if(obj.getClass().getName().equals("Foo")) // Wrong!

• Opens the door to class spoofing across name spaces

• Better: Compare by identitity of the classes' Class object (singleton!)

- if(a.getClass() == b.getClass()) { ...

- if(obj.getClass() == getClassLoader().loadClass("Foo")){

class A

class B

fry.com

class X

class B

cook.com

13

Secure Software Engineering: Secure coding

Slide 25Slide 25

Java package scope

� Meant for visibility (to prevent unintentional misuse), not for security!

� A package is not a trust domain, since it can be added to by an attacker

• (... except the java.* packages: A check to prevent this is hard-coded in)

• Attacker code:
package com.victim.somepackage; // possible even for attacker
public AddedAttackerClass {

// access the package-visible methods of the victim

� To prevent addition to a package, either ...

• ... put the package in a sealed .jar file, or

• ... set the property package.definition=mypackagename in the
lib/security/java.security properties file

Secure Software Engineering: Secure coding

Slide 26Slide 26

Inner classes

� Inner classes may be defined within an outer class to ...
• ... hide the name (but only the name!) of the inner class to other classes

• ... provide "insider" access to the private(!) members of the outer class

� class Outer {
private int i = 1;
class Inner {
public void f() {
i = 5; // access outer class's private member

} }
public static void main() {
Inner in = new Inner(); // Inner defined here

}
}
// Inner undefined here

14

Secure Software Engineering: Secure coding

Slide 27Slide 27

Inner classes do not increase, but harm confidentiality

� At run-time, an object of an inner class is NOT hidden

• The JVM does not know inner classes, so the Java compiler makes Inner
a "normal" class at package scope, named Outer$Inner

• Outer$Inner's members may be accessed by all classes of the package

� And now the best thing ...

• To realize access to the outer class’s private members, inner classes will
silently change the private fields of the outer(!) class to package scope

• Any class in the package (remember packages are not closed!) may access
the private members of the outer class, thus making it less secure

� Recommendation: Use inner classes for visibility limitations only, but not
to implement security

Secure Software Engineering: Secure coding

Slide 28Slide 28

Ensure that sensitive classes are not (de)Serializable
� Serialization is the process of turning a live Java object into a byte string

• Useful e.g. for persistent storage or network transfer of Java objects

• Implicit default implementation will be applied to all classes that implement
Serializable unless they define their own (de)serialization methods:

- void writeObject(ObjectOutputStream out) throws ...

- void readObject(ObjectInputStream in) throws ...

� A serialized object is out of control of Java:
Just a simple byte string that an attacker could manipulate at will, e.g.

• Read secret data from private fields not accessible on a live object

• Set sensitive data to values the attacker could not legally set on a live object

� Prevention: Make sensitive classes un(de)serializable by making their
write/readObject methods throw an IOException

15

Secure Software Engineering: Secure coding

Slide 29Slide 29

All security grants are off when using native code

� All protection provided by the Java system (compiler,
verifier, JVM) does not have any power over native
machine code accessing Java objects.That is, ...

• Private data may be freely accessed

• Any byte of any object may be read or written arbitrarily,
ignoring all typing rules, invariants implemented by setter methods etc.

• Objects may be forged (e.g. created without running its constructor)

• No SecurityManager is ever invoked

� Consequences:

• Never run untrusted native code

• Check your trusted native code with extreme care

Croft/Tan (Boston College)
are reviewing JDK's native
code: Found about 100
vulnerabilities so far (covered
40 K of 800 KLoC so far)

Secure Software Engineering: Secure coding

Slide 30Slide 30

8. Secure coding

8.1 Advice for specific programming languages

8.1.3 PHP

16

Secure Software Engineering: Secure coding

Slide 31Slide 31

PHP
� PHP is a script language, mostly to generate dynamic web pages

� Server-side scripting: PHP code embedded in HTML pages will be
executed by the server before sending the HTML page to the browser

• Embedded PHP scripts will be replaced by their output: Dynamic content!

� Server side
<html>
<body>
Hello user, today is
<?php print_r(getdate()); ?>
</body>
</html>

� PHP scripts may access any data in the HTTP request, like URL
parameters, form input etc. via predefined variables

Client side (browser)
<html>
<body>
Hello user, today is
Tue, May 23th 2007
</body>
</html>

Secure Software Engineering: Secure coding

Slide 32Slide 32

PHP and security
� Design goals of PHP (especially noticeable in the default

choices) were ...
• Ease of programming

- In practice, many programmers with superficial knowledge

• Network transparency
- Large and complex remote attack surface

� Non-goal: Security
• Some signs of change recently, but very few, slowly and painfully

• Already several failed attempts at better security
(magic_quotes_gpc, safe_mode partially)

• No coherent security model, many local inconsistencies

17

Secure Software Engineering: Secure coding

Slide 33Slide 33

Accessing user input in PHP

� register_globals off/on:
URL parameters overwrite(!) equal-name PHP program variables

• Before PHP-4.2.0, register_globals on was the default

• Best choice: register_globals = off (default since PHP 4.2.0)

� Second-best solution: Reset all global variables not explicitly designed for
user input before their first use

• Difficult if the uses are spread across many files: Which is the first use?

� Never access user input by global variables; preferably not by
$_REQUEST (mixes GET and POST /) either, but through the predefined
"superglobal" arrays $_GET, $_POST etc.

Secure Software Engineering: Secure coding

Slide 34Slide 34

Treatment of local and remote files in PHP

� PHP often accepts URLs where file names would be expected
• include $libdir/$usersFileChoice

• Most frequently exploited vulnerability at present: Used to inject attack code

• Deny loading of remote files by allow_url_fopen = off

� Deny uploading of files (attack code!) if possible
• file_uploads = off

• If indispensable, mistrust file name and type and save outside document root

� Limit file access to the directories intended for this:
• open_basedir = /path/to/application/files

18

Secure Software Engineering: Secure coding

Slide 35Slide 35

Miscellaneous PHP advice

� Disable displaying internal error information: display_errors = off.

� Disable failed input validation mechanism: magic_quotes_gpc = off

� Disable dynamic loading of modules: enable_dl = off

� If possible, use safe_mode[gid]: Frequently sensible restrictions on ...
• ... available functions (e.g. no system(), exec(), ...)

• ... file access (compares owner of script and file; causes problems with CMSs)

• ... uploading files (forbidden)

• ... any many other things (some of which are questionable)

� Don't make configuration file php.ini accessible on the web

Secure Software Engineering: Secure coding

Slide 36Slide 36

8. Secure coding

8.1 Advice for specific programming languages

8.1.4 How much does the language matter for security?

19

Secure Software Engineering: Secure coding

Slide 37Slide 37

How much does the programming language matter for security? (1)

� Less than you perhaps think by now ☺

� Informal study by Cigital Inc.:

• C programs have 4-5 vulnerabitlities per KLoC

• Java programs still have 1-2 vulnerabitlities per KLoC

� Admittedly: Some languages have certain types of errors
which simply don't exist in other languages

• Ex. buffer overflows in C, register_globals in PHP

� However, in many cases these well-known problems can be
mitigated by coding guidelines

• e.g. use StrSafe in C, use safe_mode in PHP

Secure Software Engineering: Secure coding

Slide 38Slide 38

How much does the programming language matter for security? (2)

� Modern languages like Java and C# are normally used for complex
applications, which imply a corresponding potential for vulnerabilities

• Ex. Race conditions between Java servlets processing HTTP requests may
be harder to identify than in C code accessing files

� Many vulnerabilities (50%??) are caused at analysis and design time:
The programming language is not relevant there

� Bottom line:

• No language will automatically produce a secure application – it may only
help or hinder somewhat

• If the programmer is aware of a language's security problems and uses
discipline to avoid them, security becomes a minor consideration in the multi-
dimensional decision for a programming language for a certain project

