
FormatGuard: Automatic Protection From printf Format String
Vulnerabilities

Crispin Cowan, Matt Barringer, Steve Beattie, and Greg Kroah-Hartman

WireX Communications, Inc. http://wirex.com/

Mike Frantzen Jamie Lokier
Purdue University CERN

Abstract
In June 2000, a major new class of vulnerabilities called
“format bugs” was discovered when an vulnerability in
WU-FTP appeared that acted almost like a buffer over-
flow, but wasn’t. Since then, dozens of format string
vulnerabilities have appeared. This paper describes the
format bug problem, and presents FormatGuard: our
proposed solution. FormatGuard is a small patch to
glibc that provides general protection against format
bugs. We show that FormatGuard is effective in protect-
ing several real programs with format vulnerabilities
against live exploits, and we show that FormatGuard
imposes minimal compatibility and performance costs.

1 Introduction
In June 2000, a major new class of vulnerabilities called
“format bugs” was discovered when an interesting vul-
nerability in WU-FTP appeared that acted almost like a
buffer overflow, but wasn’t [23]. Rather, the problem
was the sudden realization that it is unsafe to allow
potentially hostile input to be passed directly as the for-
mat string for calls to printf-like functions. The dan-
ger is that creative inclusion of % directives in the
format string coupled with the lack of any effective type
or argument counting in C’s varargs facility allows the
attacker to induce unexpected behavior in programs.

This vulnerability is made particularly dangerous by the
%n directive, which assumes that the corresponding
argument to printf is of type “int *”, and writes
back the number of bytes formatted so far. If the
attacker crafts the format string, then they can use the
%n directive to write an arbitrary value to an arbitrary
word in the program’s memory. This makes format bugs
every bit as dangerous as buffer overflows [9]: the
attacker can send a single packet of data to a vulnerable
program, and obtain a remote (possibly root) shell

prompt for their trouble. Since June 2000, format bugs
have eclipsed buffer overflow vulnerabilities for the
most common form of remote penetration vulnerability.

There are several obvious solutions to this problem,
which unfortunately don’t work:

Remove the %n feature: The printf %n directive is
the most dangerous, because it induces printf to
write data back to the argument list. It has been pro-
posed that the %n feature simply be removed from the
printf family of functions. Unfortunately, there
exist real programs that actually use the %n feature
(which is in the ANSI C specification [13]) so this
would break an undesirable amount of software.

Permit Only Static Format Strings: Format bugs occur
because the printf tolerates dynamic format
strings. It has been proposed that printf be modi-
fied to insist that the format string be static. This ap-
proach fails because a large number of programs, es-
pecially those using the GNU internationalization li-
brary, generate format strings dynamically, so this
too would break an undesirable amount of software.

Count the Arguments to printf: Because %n treats
the corresponding argument as an int * an effec-
tive format bug attack must walk back up the stack to
find a word that points to the right place, and/or out-
put a sufficient number of bytes to affect the %n val-
ue. Thus the attacker nearly always must provide a
format string that does not match the actual number
of arguments presented to printf. If it can be done,
this approach is effective in stopping format bug at-
tacks. Unfortunately, the varargs mechanism that C
employs to permit a variable number of arguments to
a given function does not permit any kind of check-
ing of either the type or count of the arguments with-

This work supported in part by DARPA contract N66001-00-C-8032.

Copyright 2001 WireX Communications, Inc. Published in the proceedings of the 2001 USENIX Security Sympo-
sium, August 2001, Washington DC.

out breaking the standard ABI for printf. Varargs
permits the receiving functions to “pop” an arbitrary
number and type of arguments off the stack, relying
on the function itself to correctly interpret the con-
tents of the stack. A “safe varargs” that passes either
an argument count or an argument terminator could
be built. However, this modified varargs protocol
would not be compatible with any existing dynamic
or static libraries and programs.

FormatGuard, our proposed solution to the format bug
problem, uses a variation on argument counting. Instead
of trying to do argument counting on varargs, Format-
Guard uses particular properties of GNU CPP (the C
PreProcessor) macro handling of variable arguments to
extract the count of actual arguments. The actual count
of arguments is then passed to a safe printf wrapper.
The wrapper parses the format string to determine how
many arguments to expect, and if the format string calls
for more arguments than the actual number of argu-
ments, it raises an intrusion alert and kills the process.

The rest of this paper is organized as follows. Section 2
elaborates on the printf format string vulnerability.
Section 3 describes FormatGuard; our solution to this
problem. We present security testing in Section 4, com-
patibility testing in Section 5, and performance testing
in Section 6. Section 7 relates FormatGuard to other
defenses for printf format string vulnerabilities. Sec-
tion 8 presents our conclusions.

2 printf Format String Vulnerabilities
The first known discovery of format bugs was by Tymm
Twillman while auditing the source code for ProFTPD
1.2.0pre6. Basic details were released to the ProFTPD
maintainers and a Linux security mailing list in early
September 1999, and then publicly released via
BugTraq [24] later that month. Other individuals then
wrote a few other format bug exploits, but they were not
immediately released to the public. It wasn't until June
2000 [23] that format bugs became widely recognized,
when numerous exploits for various common software
packages started to surface on security mailing lists.

Format bugs occur fundamentally because C’s varargs
mechanism is type unsafe. Varargs provides a set of
primitives for “popping” arguments off the stack. The
number of bytes “popped” depends on the type of the
expected argument. At no time is either the type or the
existence of the argument checked: the function receiv-
ing the arguments is entirely responsible for popping the
correct number, type, and sequence of arguments.

The printf family of functions (syslog, printf,
fprintf, sprintf, and snprintf) use varargs to
support the ability to output a variable number of argu-
ments. The format string tells the function the type and
sequence of arguments to pop and then format for out-
put. The vulnerability occurs if the format string is
bogus, as is the case when the format string is actually
provided by the attacker.

An example of this situation occurs when a programmer
writes “printf(str)” as a short-hand for
“printf(“%s”, str)”. Because this idiom is per-
fectly functional, and easier to type, it has been used for
many years. Unfortunately, it is also vulnerable if the
attacker inserts spurious % directives in the str string.

The %n directive is particularly dangerous: it assumes
that the corresponding argument to printf is of type
“int *”, and writes back the number of bytes format-
ted so far into the storage pointed to by the int *. The
result of spurious %n directives in printf format
strings is that the attacker can “walk” back up the stack
some number of words by inserting some number of %d
directives, until they reach a suitable word on the stack,
and treating that word as an int *, use a %n to over-
write a word nearly anywhere in the victim program’s
address space, creating substantial security problems. If
buffers are of appropriate size, the attacker can also use
the buffer itself as a source of words to use as the int
* pointer, making it even easier for the attacker to use
%n to modify an arbitrary word of memory.

Thus the essential features that create format vulnerabil-
ities are the basic lack of type safety in the C program-
ming language, the %n directive that induces
unexpected side-effects in printf calls, and the casual
use of un-filtered user-input as a printf format string
due to the common assumption that this is a safe prac-
tice. Detailed descriptions of the exploitation of
printf vulnerabilities have been written by Boucha-
reine [4, 5] and Newsham [15].

3 FormatGuard: Protection from Funny
Format Strings
An essential part of the format string attack described in
Section 2 is that the attacker provides some number of
spurious % directives in user-input that is subsequently
used as a format string for a printf call. FormatGuard
defends against format bug attacks by comparing the
number of actual arguments presented to printf
against the number of arguments called for by the for-
mat string. If the actual number of arguments is less than
the number of arguments the format string calls for, then

FormatGuard deems this call to be an attack, syslog’s
the attempt, and aborts the program. As previously dis-
cussed, C’s varargs mechanism does not permit argu-
ment counting, and so the trick is to find a way to count
the arguments. Section 3.1 describes how FormatGuard
implements argument counting with GNU CPP, and
Section 3.2 describes how FormatGuard uses the argu-
ment count to implement a protected printf wrapper.

3.1 Counting Arguments
Frantzen first proposed the CPP method on July 25,
2000 [11]. This method exploits the way that CPP (the C
PreProcessor) handles variable argument lists. Using the
macro production shown in Figure 1, CPP can count the
arguments by stripping the leading argument away in
each production, similar to the Lisp CAR/CDDR idiom.

On September 25, 2000 Lokier [14] proposed an
improved method of using CPP variable argument syn-
tax for argument counting. Lokier’s method allowed
WireX to develop argument counting for FormatGuard
that is recursive, reentrant, and thus thread safe, shown
in Figure 2. This code function as follows:

1. The __formatguard_counter production
serves to capture the zero-case, so that calls to
printf containing only a null argument list are
handled correctly.

2. The __formatguard_count1 production ap-
pends a sequence of counter place holding arguments
5, 4, 3, 2, and 1. It does so by compresses the variable
argument list from __formatguard_counter
into a single token y.

3. Finally, __formatguard_count2 re-expands
the compressed variable argument group y from
__formatguard_count1, but in doing so maps
the trailing counter place holding arguments to an-
other series of place holders, such that the first place
holder from __formatguard_count1 is
mapped to the argument n, which in turn is the sole
output of this sequence of productions.

The result of the above three productions is that place
holding counter arguments are shifted to the right in
proportion to the number of arguments presented to
printf in the first place, and therefore
__formatguard_counter() returns the count of
the number of arguments presented.

The “-1” is a kludge factor to accommodate the exist-
ence of the format string itself. The
__PRETTY_FUNCTION__ macro is inserted to allow
meaningful error reporting. Figure 3 presents an exam-
ple, expanding an argument list of two elements: (a, b)
to return a value of 2.

3.2 Protected printf
Figure 2 shows a definition for a printf macro that
includes a call to the argument counter described in Sec-
tion 3.1, and passes this count to a
__protected_printf function. The purpose is to
prevent the attacker from injecting spurious % direc-
tives into an un-filtered format statements, by ensuring
that the number of % directives is less than or equal to
the actual number of arguments provided.

Parsing printf format strings can be difficult. For-
matGuard determines the number of % directives in a

#define printf mikes_print(&cnt, print0

#define print0(x, args...) x ,print1(## args)
#define print1(x, args...) x+(++cnt-cnt) ,print2(## args)
#define print2(x, args...) x+(++cnt-cnt) ,print3(## args)
...
void mikes_print(int *args, char *format, ...);

Figure 1 Frantzen’s Argument Counter

#define __formatguard_counter(y...) __formatguard_count1 (, ##y)
#define __formatguard_count1(y...) \
 __formatguard_count2 (y, 5,4,3,2,1,0)
#define __formatguard_count2(_,x0,x1,x2,x3,x4,n,ys...) n

#define printf(x...) \
 __protected_printf (__PRETTY_FUNCTION__, \
 __formatguard_counter(x) - 1 , ## x)

Figure 2 FormatGuard Implementation, Simplifed to Handle 5 or Fewer Arguments

format string accurately (i.e. getting the same answer
that printf will get) by borrowing the
parse_printf_format function from the glibc
library itself, which conveniently enough, returns
exactly the number of arguments to be formatted.

If the number of % directives exceeds the number of
arguments provided to printf, then
__protected_printf deems a format attack to be
under way. Note that the attack is mid-way through: the
attacker has not corrupted any significant program state,
but the attacker has put the victim program in an untena-
ble position; at the very least, it is not possible to suc-
cessfully complete the printf call. FormatGuard
responds by syslog’ing the intrusion attempt with an
entry similar to:

Feb 4 04:54:40 groo foo[13128]: Immu-
nixOS format error - mismatch of 2 in
printf called by main
where “foo” is the name of the victim program,
“printf” is one of the FormatGuard-wrapped func-
tions (syslog, printf, fprintf, sprintf, and
snprintf), “2” is the actual number of arguments
passed to printf, and therefore the expected number of %
directives, and “main” is the function that printf
was called from. FormatGuard then aborts the process to
prevent the attacker from taking control, similar to the
way StackGuard handles buffer overflow attacks [9, 7].

3.3 FormatGuard Packaging: Modified
glibc
In Linux-like systems, the printf family of functions
is provided by the glibc library. The
__formatguard_count macros shown in Figure 2
are inserted into the /usr/include/stdio.h file
and the __protected_printf function is inserted

into the glibc library itself. Thus FormatGuard is
packaged as a modified implementation of glibc
2.2.

Note that, despite the packaging of FormatGuard with a
library package, programs that are to benefit from For-
matGuard protection must be re-compiled from source,
using the FormatGuard version of stdio.h. In many
cases, this imposes a substantial workload on people
wishing to protect an entire system with FormatGuard.
However, WireX has included both FormatGuard and
StackGuard [9, 7] in the latest edition of Immunix
Linux. Both the Immunix system and the FormatGuard
implementation of glibc are available for download
from http://immunix.org/

4 Security Effectiveness
FormatGuard presents several security limitations in the
form of various cases that FormatGuard does not protect
against, which we present in Section 4.1. Section 4.2
presents our testing of live exploits against actual vul-
nerabilities found in widely used software.

4.1 Security Limitations
FormatGuard fails to protect against format bugs under
several circumstances. The first is if the attacker’s for-
mat string undercounts or matches the actual argument
count to the printf-like function, then FormatGuard will
fail to detect the attack. In theory, it is possible for the
attacker to employ such an attack by creatively mis-typ-
ing the arguments, e.g. treating an int argument as dou-
ble argument. In practice, no such attacks have been
constructed, and would likely be brittle. Insisting on an
exact match of arguments and % directives would
induce false-positives: it is quite common for code to

formatguard_counter (a, b)
which gets expanded to

__formatguard_count1 (, a, b)
which the second macro expands to

__formatguard_count2 (, a, b, 5, 4, 3, 2, 1, 0)
The arguments to match the __formatguard_count2 rule in the following way:

__formatguard_count2 (, a, b , 5, 4, 3, 2, 1, 0)
 ^ ^ ^ ^ ^ ^ ^ ^ ^
 | | | | | | | | |
 _ x0 x1 x2 x3 x4 n ys...
Thus n gets matched to 2, which is what is returned.

Figure 3 Example Expanding the FormatGuard Macro

provide more arguments than the format string specifies.
There is even an example within the glibc code itself.

The second limitation is that a program may take the
address of printf, store it in a function pointer variable,
and then call via the variable later. This sequence of
events disables FormatGuard protection, because taking
the address of printf does not generate an error, and the
subsequent indirect call through the function pointer
does not expand the macro. Fortunately, this is not a
common thing to do with a printf-like function.

The third limitation is that FormatGuard cannot provide
protection for programs that manually construct stacks
of varargs arguments and then make direct calls to
vsprintf (and friends). Because such programs can
dynamically construct a variable list of arguments, it is
not possible to count the arguments presented through
static analysis.

A variation on this problem is libraries that present
printf-like functions.These libraries in turn call vsprintf
directly, and thus do not get FormatGuard protection.
For example the GLib library (part of GTK+, not to be
confused with glibc) provides a rich family of printf-
like string manipulation functions. To address this class
of problems, we are considering expanding Format-
Guard protection beyond glibc into other libraries that
provide printf-like functionality, such as GLib.

In practice, the only limitations that we have encoun-
tered are the direct calls to vsprintf and the non-glibc
library calls to vsprintf, as we show in Section 4.2.

4.2 Security Testing
To test the security value of FormatGuard, we tested it
against real vulnerable programs and real live exploit
programs collected from the wild. The test procedure is
to run the attack exploit against the vulnerable version
of the program, to verify that the vulnerability is legiti-
mate and the attack program is functional. We then re-
compile the vulnerable program from source, including
FormatGuard protection, without repairing the vulnera-
bility, and re-run the attack against the vulnerable pro-
gram. Because of the level of integration effort required
to deploy FormatGuard, we consider only the Immunix
system, and thus consider only the vulnerabilities for the
Linux/x86 platform. The results are shown in Table 1.

We note (with some irony) that wu-ftpd was the catalyst
for the format string vulnerability problem [23, 6] and
yet is one of the few format bugs that we found that For-
matGuard does not stop. Investigation revealed that this
is because wu-ftpd completely re-implements its own
printf functions (as described in Section 4.1) and
thus does not use the hardened printf functions that
FormatGuard supplies. In similar fashion, FormatGuard
failed to protect gftp, which uses the family printf-
like functions found in the GLib library.

While this is unfortunate for wu-ftpd and for Format-
Guard, it also provides interesting additional evidence
that synthetic “biodiversity” in the form of n-version
programming (re-implementing the same functionality
by different people) does not necessarily provide resis-
tance against common security failure modes [8]. In this
case, biodiversity seems to have actually degraded secu-
rity, because the semantic failure was replicated across
implementations, necessitating the replication of For-
matGuard protection across these implementations.

Table 1: FormatGuard Security Testing Against Live Exploits

Program Result Without
FormatGuard

Result With
FormatGuard

wu-ftpd [23] root shell root shell
cfengine [21] root shell FormatGuard alert
rpc.statd [20] root shell FormatGuard alert
LPRng [25] root shell FormatGuard alert
PHP 3.0.16 [18] httpd shell FormatGuard alert
Bitchx [27] user shell FormatGuard alert
xlock [3] root shell FormatGuard alert
gftp user shell user shell

We also note (with further irony) that the PHP vulnera-
bility [18] is only manifest in an unusual configuration
that involves extra logging. The cause is unsafe format
string handling in the call to syslog. The interesting
factor to note is that security-conscious administrators
often increase the level of logging on their systems to
provide enhanced security. If, as these vulnerabilities
tend to indicate, it is the case that format bugs often
result from unsafe format string handling in syslog
calls, then increasing logging levels may occasionally
have the opposite from intended effect, and actually
open the host to new vulnerabilities, further increasing
the need for protection against format bugs.

5 Compatibility Testing
FormatGuard is intended to be highly transparent: For-
matGuard protection should not cause programs to fail
to compile or run, and the “false positive” rate (legiti-
mate computation reported as format string attacks)
should be asymtopic to zero. To be effective, Format-
Guard needs to compile and run literally millions of
lines of production C code. In this section, we describe
the extent to which we have achieved these goals.

For the most part, we have succeeded. FormatGuard has
been used to build the Immunix Linux distribution,
which includes 500+ RPM packages, comprising mil-
lions of lines of C code. These Immunix systems have
been running in production on assorted WireX servers
and workstations since October 2000. These systems
function normally, being not noticeabley different from
non-FormatGuard machines. To date, the observed false
positive rate is zero. The experience has been similar to
the StackGuard “eat our own dog food” experience [7].

However, FormatGuard is also less transparent than
StackGuard: of the approximately 500 packages that we
compiled with FormatGuard in the construction of the
Immunix system, two required modification to accom-
modate StackGuard protection, while approximately 70
required modification to accommodate FormatGuard
protection. These modifications were required to treat C
programming idioms that break when CPP directives
(macros and #ifdef statements) are included inside the
arguments to a macro1, as in the following C program-
ming idiom:

printf(“Hello world”
#ifdef X
“ is X enabled”
#endif
“\n”);
CPP expands the above code into either

printf(“Hello world” “ is X enabled”
“\n”);
or

printf(“Hello world” “\n”);
which is a convenient way of conditionally compiling
strings. This creates problems for FormatGuard, because
FormatGuard makes printf a macro instead of a pure
function, and CPP does not support #ifdef (or other
CPP directives) as argument to macros, and so the above
code will not work.

The work-around is to put the printf call in parentheses,
which disables macro expansion, e.g. write
(printf)(“Hello world”) instead of
printf(“Hello world”). This disables Format-
Guard protection for this call only. Thus the developer
must ensure that the resulting naked call to printf is safe.
However, the problematic cases almost always involve
static strings being conditionally compiled, so this is
rarely a difficult problem.

Once code has been compiled with FormatGuard, there
are additional limitations:

• Non-FormatGuard programs can link to Format-
Guard libraries without problems. However, these
programs do not get the benefit of FormatGuard
protection, and are still vulnerable to format bugs.

• FormatGuard programs cannot link to non-Format-
Guard libraries unless the FormatGuard version of
glibc is present.

Thus the Immunix platform easily hosts foreign pro-
grams, but FormatGuard-protected programs do not run
on foreign platforms without some intervention.

6 Performance Testing
Any run-time security defense will impose performance
costs, due to additional run-time checks that it is per-
forming. However, a security enhancement must be effi-
cient enough that these overhead costs are minimal with
respect to the defense they provide. Ideally, the cost
should be below noticability for the intended user base.

FormatGuard achieves this level of performance. Over-
head is only imposed on the run-time cost of calling1. Rumor has it that the ANSI C standard [1] mandates

that printf is not a macro. This is not true [17].

*printf and syslog functions. Section 6.1 presents
microbenchmarks that show the precise overhead
imposed on calling these functions. Section 6.2 shows
macrobenchmarks that measure the imposed overhead
on (fairly) printf-intensive programs.

6.1 Microbenchmarks
We measure the marginal overhead of FormatGuard
protection on printf calls with a tight loop as shown
in Figure 4. We measured the performance of this loop
in single-user mode with and without FormatGuard pro-
tection, subtract out the run time of a loop executed
without the printf to eliminate the loop overhead,
and then divide to get the %overhead. The run time with
FormatGuard was 19.09 seconds, without FormatGuard
was 13.97 seconds, and the loop overhead was 0.032
seconds. Thus FormatGuard imposed a marginal over-
head of 37% on a trivial printf call.

We then repeated the above experiment, but replaced
the printf call with one that formats a through z,
rather than just three letters. The FormatGuard run time
was 134.7 seconds, without FormatGuard 99 seconds,
and 0.032 second loop overhead has become negligible.
Thus FormatGuard imposed a marginal slowdown of
36% on a more complex printf call, and we conclude
that FormatGuard imposes a fairly consistent 37% mar-
ginal overhead on most printf calls.

6.2 Macrobenchmarks
Most programs do not spend much time running the
printf function; printf is an I/O function, and even
programs that are I/O intensive tend to format their own
data rather than using printf. The printf function
is mostly used to format error-handling code. So we had
some difficulty finding programs that would show mea-
surable degradation under FormatGuard. We found such
a program in man2html [26], which uses printf
extensively to output HTML-formatted man pages.

Our test was to batch translate 79 man pages through
man2html, which is 596 KB of input. The test was run
multiple times in single-user mode on a system with 256
MB of RAM, so I/O overhead was minimal. The result
is that the batch takes 0.685 seconds without Format-
Guard, and 0.698 seconds with FormatGuard. Thus in
an arguably near worst-case application scenario, For-
matGuard imposes 1.3% run-time overhead. In most
cases, overhead is considerably lower, often negligible.

7 Related Work
Work related to FormatGuard is divided into analysis of
format string vulnerabilities, which we described in Sec-
tion 2, and work to protect programs against such vul-
nerabilities, which we describe here.

Fundamentally, format bugs exist because of the tension
between strong type checking, and convenient polymor-
phism. C and Pascal made opposite choices in this
regard: Pascal chose the safe route of strict type check-
ing, which means that Pascal functions can never be
spoofed with this kind of attack, but also means that it is
difficult to write a convenient generic I/O function like
printf in Pascal [12]. Conversely, C chose a com-
pletely type-unsafe varargs mechanism that makes it
impossible to statically type check a polymorphic func-
tion call.

More recent programming languages such as ML have
solved this tension with type inference, but these tech-
niques are difficult to apply to C programs [16, 28].
Wagner et al [22] present a compromise solution in
which a “taint” type qualifier is added to the C language,
allowing programmers to designate data as “tainted”
(provided by the adversary) and the compiler tracks the
data usage through the program as tainted. If tainted
data is presented to printf-like functions as the format
string, the compiler flags an error. The main advantage
to this approach is that it detects potential vulnerabilities
at compile time, rather than when the attacker tries to

int main(void) {
 int i = 0;
 int counter = 100000000;

 while (i != counter) {
 printf(“%s %s %s\n”, “a”, “b”, “c”);
 i++;
 }
 printf(“%d\n”, i); // force compiler to retain the loop
 exit(0); // & not optimize it away
}

Figure 4 Microbenchmark

exploit them. The main limitation of this approach is
that it is not transparent: functions that collect user-input
must be manually annotated as “tainted”.

Since it is problematic to properly type check C pro-
grams, more pragmatic means have emerged to deal
specifically with format bugs. Alan DeKok wrote PScan
[10] to scan C source code looking for potential format
bugs by looking for the simple/common case of a
printf-like function in which the last parameter is
also the format string, and the format string is not static.

GCC itself has an un-documented feature where “-
Wformat=2” will cause GCC to complain about non-
static format strings. This is over-general, in that it com-
plains about legitimate code, such as internationaliza-
tion support, which uses functions to generate format
strings. However, Joseph Myers has implemented an
enhancement to -Wformat that unconditionally com-
plains about the “printf(foo)” case. The function-
ality is essentially similar to PScan, with the advantage
that it is built into the compiler, and the disadvantage
that it is only available in a pre-release version of the
GCC compiler.

Both PScan and the -Wformat enhancement offer the
advantage that they provide static warnings, so the
developer knows at compile time that there is a problem,
providing an opportunity to fix the problem before the
code ships. However, because these static analysis
methods are heuristics, they are subject to both false
negatives (missing vulnerabilities) and false positives
(mis-identifying non-vulnerabilities) and thus they
present an additional burden on developers. The addi-
tional burden, in turn, is problematic because developers
are never actually required to use those tools, and thus
may choose to omit them if they prove troublesome.

In contrast, runtime techniques present a low burden on
developers (see Section 5) and uniformly improves the
security assurance of applications. libformat [19] is
a library that aborts programs if they call printf-like
functions with a format string that is writable and con-
tains a %n directive. This technique is often effective,
but because both writable format strings and %n direc-
tives are legal, it can be subject to false positives.

libsafe [2] is a library approach to defending against
buffer overflow attacks. In version 2.0, libsafe has
added protection against format bugs by applying their
technique of the library inspecting the call stack for
plausible arguments, in this instance rejecting %n direc-
tives that try to write to the function’s return address on
the stack. The strength of this approach is that, like lib-

format, it affords protection to binary programs, and
protects against format bugs in direct calls to
vsprintf (see Section 4.1). The limitations of libsafe
are that it cannot protect code compiled with the
“no_frame_pointer” optimization, and that it only
protects against format string attacks aimed at the acti-
vation record.

FormatGuard tries to achieve some of the benefits of
both static and run-time techniques. By using a source-
code re-compilation technique, FormatGuard achieves
high precision, resulting in few false negatives, and no
false positive, presenting a very low burden on develop-
ers. Even if the original developer chose not to do any-
thing about format vulnerabilities, an end-user of an
open source product can re-compile the product with
FormatGuard and gain protection from format bugs the
developer failed to discover.

8 Conclusions
Format bugs are a dangerous and pervasive security
problem that appeared suddenly in June 2000, and con-
tinues to be a major cause of software vulnerabilities.
FormatGuard protects vulnerable programs against this
problem. We have shown that FormatGuard is effective
in stopping format bug attacks, imposes minimal com-
patibility, problems, and has a practical performance
penalty of less than 2%. FormatGuard is incorporated
into WireX’s Immunix linux distribution and server
products, and is available as a GPL’d patch to glibc at
http://immunix.org

References
[1] American National Standards Institute, Inc.

Programming Language – C, ANSI Standard
X3.159. American National Standards Institute,
Inc., 1989.

[2] Arash Baratloo, Navjot Singh, and Timothy Tsai.
Transparent Run-Time Defense Against Stack
Smashing Attacks. In 2000 USENIX Annual
Technical Conference, San Diego, CA, June 18-23
2000.

[3] “bind”. xlock (exec) Input Validation Error.
Bugtraq mailing list, http://
www.securityfocus.com/vdb/
bottom.html?vid=1585, August 15 2000.

[4] Kalou/Pascal Bouchareine. Format String
Vulnerability. http://plan9.hert.org/
papers/format.html, July 18 2000.

[5] Pascal Bouchareine. User Supplied Format String
Bug. http://julianor.tripod.com/
usfs.html, July 2000.

[6] Crispin Cowan. Format Bugs in Windows Code.
Vuln-dev mailing list, http://
www.securityfocus.com/archive/82/
81455, September 10 2000.

[7] Crispin Cowan, Steve Beattie, Ryan Finnin Day,
Calton Pu, Perry Wagle, and Erik Walthinsen.
Protecting Systems from Stack Smashing Attacks
with StackGuard. In Linux Expo, Raleigh, NC, May
1999.

[8] Crispin Cowan, Heather Hinton, Calton Pu, and
Jonathan Walpole. The Cracker Patch Choice: An
Analysis of Post Hoc Security Techniques. In
Proceedings of the 19th National Information
Systems Security Conference (NISSC 2000),
Baltimore, MD, October 2000.

[9] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang. StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. In 7th USENIX Security
Conference, pages 63–77, San Antonio, TX,
January 1998.

[10] Alan DeKok. PScan: A limited problem scanner for
C source files. Bugtraq mailing list, http://
www.securityfocus.com/archive/1/
68688 and the web http://
www.striker.ottawa.on.ca/ aland/
pscan/, July 7 2000.

[11] Mike Frantzen. Poor Man’s Solution to Format
Bugs. Vuln-dev mailing list, http://
www.securityfocus.com/archive/1/
72118, July 25 2000.

[12] Brian Kernighan. Why Pascal is not my Favorite
Programming Language. Report 100, AT&T Bell
Labs, Murry Hill, NJ, July 1981. submitted for
publication.

[13] Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice Hall,
Englewood Cliffs, NJ, second edition, 1988.

[14] Jamie Lokier. Varargs macros subtly broken. GCC
mailing list, http://gcc.gnu.org/ml/
gcc/2000-09/msg00604.html, September
25 2000.

[15] Tim Newsham. Format String Attacks. Bugtraq
mailing list, http://
www.securityfocus.com/archive/1/
81565, September 9 2000.

[16] Robert O’Callahan and Daniel Jackson. Lackwit: A
Program Understanding Tool Based on Type
Inference. In Proceedings of International
Conference on Software Engineering (ICSE’97),
Boston, MA, May 1997.

[17] P.J. Plauger. Standard C Library. Prentice Hall,

Englewood Cliffs, NJ, 1991.

[18] “Weld Pond”. @stake Advisory: PHP3/PHP4
Logging Format String Vulnerability (A 101200-
1). Bugtraq mailing list, http://
www.securityfocus.com/archive/1/
139259, October 12 2000.

[19] Tim J. Robbins. libformat. http://
the.wiretapped.net/security/host-
security/libformat/, November 2001.

[20] “ron1n”. statdx2 - linux rpc.statd revisited. Bugtraq
mailing list, http://
marc.theaimsgroup.com/
?l=bugtraq&m=97123424719960&w=2,
October 11 2000.

[21] Pekka Savola. Very probable remote root
vulnerability in cfengine. Bugtraq mailing list,
http://marc.theaimsgroup.com/
?l=bugtraq&m=97050677208267&w=2,
October 2 2000.

[22] Umesh Shankar, Kunal Talwar, Jeff Foster, and
David Wagner. Automated Detection of Format-
String Vulnerabilities. In USENIX Security
Symposium, Washington, DC, August 2001.

[23] “tf8”. Wu-Ftpd Remote Format String Stack
Overwrite Vulnerability. http://
www.securityfocus.com/bid/1387, June
22 2000.

[24] Tymm Twillman. Exploit for proftpd 1.2.0pre6.
Bugtraq mailing list, http://
www.securityfocus.com/templates/
archive.pike?list=1&mid=28143,
September 1999.

[25] “venomous”. LPRng remote root exploit. Bugtraq
mailing list, http://
marc.theaimsgroup.com/
?l=bugtraq&m=97683900820267&w=2,
December 14 2000.

[26] Richard Verhoeven. man2html. http://
wsinwp01.win.tue.nl:1234/, February 10
2000.

[27] “Zinx Verituse”. BitchX - more on format bugs?
Bugtraq mailing list, http://
www.securityfocus.com/archive/1/
68256, July 3 2000.

[28] David Wagner, Jeffrey S. Foster, Eric A. Brewer,
and Alexander Aiken. A First Step Towards
Automated Detection of Buffer Overrun
Vulnerabilities. In NDSS (Network and Distributed
System Security), San Diego, CA, February 2000.

