
Foreshadow-NG: Breaking the Virtual Memory Abstraction with Transient
Out-of-Order Execution

Revision 1.0 (August 14, 2018)

Ofir Weisse3, Jo Van Bulck1, Marina Minkin2, Daniel Genkin3, Baris Kasikci3, Frank Piessens1,
Mark Silberstein2, Raoul Strackx1, Thomas F. Wenisch3, and Yuval Yarom4

1imec-DistriNet, KU Leuven, 2Technion, 3University of Michigan, 4University of Adelaide and
Data61

Abstract

In January 2018, we discovered the Foreshadow transient
execution attack (USENIX Security’18) targeting Intel
SGX technology. Intel’s subsequent investigation of our
attack uncovered two closely related variants, which we
collectively call Foreshadow-NG and which Intel refers
to as L1 Terminal Fault. Current analyses focus mostly
on mitigation strategies, providing only limited insight
into the attacks themselves and their consequences. The
aim of this report is to alleviate this situation by thor-
oughly analyzing Foreshadow-type attacks and their im-
plications in the light of the emerging transient execution
research area.

At a high level, whereas previous generation
Meltdown-type attacks are limited to reading privileged
supervisor data within the attacker’s virtual address
space, Foreshadow-NG attacks completely bypass the
virtual memory abstraction by directly exposing cached
physical memory contents to unprivileged applications
and guest virtual machines. We review mitigation strate-
gies proposed by Intel, and explain how Foreshadow-NG
necessitates additional OS and hypervisor-level defense
mechanisms on top of existing Meltdown mitigations.

Disclaimer. This is an evolving document, which
presents our understanding of Foreshadow / L1 Terminal
Fault attacks and their implications at the time of writ-
ing. Due to the recent disclosure of the attacks, and in
particular of Foreshadow-NG, our understanding may be
incomplete, and while we have done our best to verify
the correctness of the description, inaccuracies may have
fallen. We aim to correct such inaccuracies and omis-
sions in future revisions of this document.

1 Introduction

For decades, memory isolation has been one of the key
principles of computer system design. Memory isola-

tion requires different computational tasks belonging to
separate security domains to be isolated from each other
and prevented from reading each other’s memory. In
modern computer architectures this is typically achieved
via hardware-backed virtual memory, where each pro-
cess has its own separate virtual address space. When
a process accesses some memory location in its virtual
address space, the hardware translates the location’s ad-
dress into the corresponding physical address. Beyond
the convenience of simulating a memory space much
larger then the system’s physical memory and the avoid-
ance of address collisions across virtual address spaces,
virtual memory serves as an effective security mecha-
nism. Specifically, because addresses used by a process
are always translated using the hardware-based transla-
tion mechanism, on a correctly functioning hardware, a
process cannot “name” physical addresses belonging to
other processes, let alone access them.

Unfortunately, the recent wave of speculative execu-
tion CPU vulnerabilities has eroded the trust in basic de-
sign principles of memory isolation via virtual memory.
Although the nominal CPU state respects process isola-
tion via virtual memory, the actual implementation of-
ten speculates past permission checks, thus allowing a
process to transiently violate memory isolation and ob-
tain sensitive information belonging to other processes.
While the CPU eventually rolls back the instructions it
incorrectly executed, by that time secrets may have al-
ready been leaked via microarchitectural side-channels.

By demonstrating how to read kernel data from user
space, the Meltdown attack [7] dismantled the memory
protection guarantees enforced by the x86 “supervisor”
page table attribute, allowing user space programs to ex-
ploit transient out-of-order execution to read data belong-
ing to the operating system, as well as to other processes.
To mitigate Meltdown, operating systems and hypervi-
sors had to be urgently patched so as to strictly sepa-
rate the virtual address spaces used for kernel and user
data, thus eliminating the need for the deficient “super-

1



visor” x86 page table attribute. While these patches im-
ply performance-sapping address space changes on al-
most every system call and virtual machine exit, it was
generally believed that strictly maintaining separate user
and kernel address spaces was sufficient to neutralize
Meltdown-type threats.

Foreshadow. In January 2018, we reported Fore-
shadow [9], a novel Meltdown variant targeting Intel
SGX technology (CVE-2018-3615), which defeats en-
clave memory isolation, sealing, and attestation guar-
antees. Subsequent investigation by Intel [5] identi-
fied the root cause for Foreshadow as an L1 Terminal
Fault (L1TF) vulnerability. Unfortunately, L1TF has
much broader and more dire consequences than leak-
ing enclave memory, for it essentially allows to dump
the entire contents of the L1 data cache, regardless of
the owner of the data. In particular, Intel identified two
closely related variants of Foreshadow, which we collec-
tively call Foreshadow-NG — Foreshadow Next Genera-
tion. At a high level, Foreshadow-NG might be exploited
by unprivileged applications for accessing kernel mem-
ory (CVE-2018-3620), or by malicious guest virtual ma-
chines to access memory belonging to the hypervisor and
other guest machines (CVE-2018-3646).

Importantly, where previous Meltdown [7] attacks
dereference unauthorized supervisor data within the at-
tacker’s virtual address space, Foreshadow-NG-type at-
tacks variants exploit a subtle L1TF microarchitectural
condition that allows to transiently compute on unautho-
rized physical memory locations that are currently not
mapped in the attacker’s virtual address space view. As
such, Foreshadow-NG is the first transient execution at-
tack that fully escapes the virtual memory sandbox—
traditional page table isolation is no longer sufficient to
prevent unauthorized memory access.

Crucially, the aforementioned page table isolation
software mitigations by themselves cannot prevent
Foreshadow-type L1TF attacks. Foreshadow therefore
brings a paradigm shift in the way we should think about
mitigating Meltdown-type threats: merely unmapping
secrets from an untrusted application’s address space
now becomes a necessary but not a sufficient condition.

Goals. With this report, we aim to complement Intel’s
official analysis [5] on L1 Terminal Faults with the fol-
lowing:

• We discuss and analyze three Foreshadow attack
variants: Foreshadow-SGX, Foreshadow-OS, and
Foreshadow-VMM where the former was identified
by us in [9] and the two latter by Intel [5].1

1We note that Intel refers to all of these as L1 Terminal Fault attacks.

SGX?
EPT

walk?
PT

walk?

L1D

vadrs
guest
padrs

host
padrs

Tag? Pass to out-of-order

CPU micro-architecture

EPCM fail

1 2 3

3a

 
Figure 1: CPU address translation and L1 terminal
fault behavior: documented architectural view (bottom)
and undocumented micro-architectural transient execu-
tion interactions (top). 2

• We compare Foreshadow-type attacks to previous
Meltdown-type transient execution vulnerabilities.

• We provide an initial description of defenses against
Foreshadow-type attack and argue that they require
a paradigm shift in traditional approaches of address
space isolation.

• We identify challenges for future work and an out-
look of the L1TF / Foreshadow landscape.

2 Computer Architecture Background

Address Translation. Whenever dereferencing a vir-
tual (i.e., linear) memory address, modern Intel x86 pro-
cessors [4] first perform a Translation Lookaside Buffer
(TLB) lookup to establish the corresponding physical ad-
dress. If there is no matching TLB entry, the proces-
sor must perform a page table walk to yield a Page Ta-
ble Entry (PTE) containing the required physical mem-
ory address and access rights. The bottom half of
Figure 1 shows how after the conventional virtual-to-
physical page table translation, an additional Extended
Page Table (EPT) walk may be needed, in case of a virtu-
alized environment, to translate the guest physical mem-
ory address into the underlying machine’s host-physical
memory address. Finally, Intel SGX-enabled proces-
sors further sanitize the resulting address translations to
make sure they abide by hardware-enforced enclave ac-
cess control restrictions. If any of these three indepen-
dent successive stages reports an access violation, a page
fault is eventually raised, and control flow is redirected
to an exception handler (or in case of Intel SGX, most
enclave memory violations are silently dropped by re-
placing memory loads with the abort page dummy value
0xff).
2PT: Page Table; EPT: Extended Page Table; EPCM: Enclave Page
Cache Metadata

2



While the above CPU address translation process is
well-documented at the architectural level [4], mod-
ern processors implement largely non-transparent micro-
architectural optimizations to speed up costly address
translations through parallelization and extra caches. In
this respect, previous research on Meltdown-type fault-
driven attacks has revealed that Intel CPUs delay mem-
ory access violation checks until instruction retirement,
allowing unauthorized memory contents to still reach
transient out-of-order instructions ahead in the pipeline
before a page fault is eventually raised. The original
Meltdown attack exploits this time window to transiently
encode supervisor-only memory in the persistent micro-
architectural state.

CPU L1 Cache. Modern Intel CPUs [4, 2] use a
carefully-crafted virtually-indexed, physically-tagged L1
cache design. As illustrated in the top half of Figure 1,
this allows the first step of the address translation to pro-
ceed in parallel with the L1 cache set lookup (as the latter
is completely determined by the software-provided vir-
tual address). After locating the correct L1 cache set,
however, the processor should still determine whether
any of the non-vacant ways within that set contain the
required data. For this, the CPU matches the (unique)
physical address resulting from the address translation
process against an internal metadata tag stored along
each of the individual ways. Only when one of the non-
vacant ways contains the exact right physical address tag,
is the data returned to the processor’s execution units
(i.e., L1 hit).

3 Foreshadow-NG-type Attacks

We begin our description of Foreshadow-NG-type at-
tacks by providing an overview on the L1 Terminal Fault
issue present in Intel processors, and describe three dis-
tinct Foreshadow-type attack variants that exploit the
L1TF issue, each with different adversary capabilities.

3.1 L1 Terminal Fault

Previous Meltdown attacks have only considered by-
passing memory protection enforced by the “supervi-
sor” page table attribute. However, there are other docu-
mented ways of causing page fault behavior on x86 pro-
cessors [4], for example by clearing the “present” bit or
setting one of the “reserved” bits in a page table entry
(PTE). As Intel documents [5], these page faults cause
the virtual to physical address translation process to abort
immediately and are accordingly referred to as termi-
nal faults. Interestingly, Intel claims that terminal faults
behave differently than permission-based page faults at

the micro-architectural level, causing the address trans-
lation process to abort before executing the architectural
EPT/SGX follow-up stages of Figure 1.

At the same time, however, the processor still derives
a physical address from the faulting PTE and attempts to
decide whether the L1 data cache could serve the mem-
ory request (i.e., L1 hit). We hypothesize that Intel opted
to implement the L1 tag comparison in parallel with the
address translation process for performance reasons.

As illustrated in the top half of Figure 1, data resid-
ing in the L1 cache is immediately forwarded to the tran-
sient out-of-order execution upon successful tag compar-
ison. While desirable from a performance perspective,
this behavior also implies that when prematurely abort-
ing the address translation process due to a terminal fault,
the transient instructions compute on unauthorized data.
Hence, as with plain Meltdown, the unauthorized mem-
ory request is properly blocked at the architectural level
(by raising a terminal fault), but adversaries can still en-
code the results of secret-dependent computations at the
microarchitectural level.

Especially dangerous in this respect, is that the ac-
tual data being passed from the L1 cache to the out-of-
order sequence solely depends on the resulting guest or
host physical address. We will explain below how a ter-
minal fault during the address translation process can
allow Foreshadow adversaries to bypass all three suc-
cessive OS/VMM/SGX memory protection phases from
Figure 1.

3.2 Adversary Capabilities

In line with Intel’s official L1TF analysis [5], we con-
sider three distinct Foreshadow/ Foreshadow-NG attack
variants, depending on the ability of the adversary.

1. Foreshadow-OS. An unprivileged adversary with
user space code execution controls the virtual ad-
dress input to the first page table walk. Such adver-
saries can cause terminal faults by merely waiting
for the OS to clear the PTE present bit in some PTE
entry when swapping a page out of memory to disk.
At this point, transient out-of-order instructions can
be used to read any cached contents located at the
physical address pointed by the PTE entry.

2. Foreshadow-VMM A malicious guest virtual ma-
chine has control over the first address mapping and
can thus trigger terminal faults directly by clearing
the present bit in the guest page table. Since ter-
minal fault behavior skips the host address transla-
tion step and immediately passes the guest physi-
cal address to the L1 cache, such adversaries can
transiently read any cached physical memory on the

3



system, including memory belonging to other VMs
or the hypervisor itself.

3. Foreshadow-SGX Finally, as demonstrated in the
Foreshadow attack [9], adversaries controlling the
final address translation output can abuse terminal
faults to bypass SGX abort page semantics mech-
anism when transiently computing on cached en-
clave secrets. Such adversaries can provoke termi-
nal faults by either clearing the page table present
bit (e.g., via the mprotect system call), or by set-
ting up a malicious memory mapping in an attacker-
controlled enclave.

3.3 Attack Impact
The L1 cache is a joint physical resource, shared between
all software running at any privilege level and security
domain on the same physical core. Consequently, the
ability to transiently compute on L1 data has far reach-
ing consequences. Foreshadow-NG adversaries may ex-
tract data that was accessed by prior computation and
left in the cache following a context switch. Such data
may originate from applications, OS kernel, hypervisor,
and VMs time-sharing the core with the adversary. To
make matters worse, modern Intel processors equipped
with HyperThreading technology [4] also share the L1
cache between sibling logical CPU cores. Secrets may
thus leak between sibling logical cores that concurrently
execute software from different security domains.

Therefore, mitigating Foreshadow-NG includes sani-
tizing PTEs, flushing the L1 cache when crossing pro-
tection boundaries, and modifying OS and hypervisor
schedulers to prevent non-trusting VMs or processes
from executing concurrently on sibling logical cores.

4 Foreshadow-OS: Exploiting Inadvertent
Page Table Mappings

Whenever the OS kernel decides to swap a virtual mem-
ory page from DRAM to persistent storage, it is required
to clear the PTE present bit. According to the proces-
sor’s architectural specification [4], however, the kernel
is free to use the remaining bits in a non-present PTE as
desired. The OS may for instance decide to leave these
bits unchanged, zero them out, or use them to store meta-
data that assists in bringing back the page from disk.

Thus, while unprivileged user space applications have
no direct control over PTEs, the metadata left by the OS
in a page table entry as it unmaps the corresponding vir-
tual page may still point to a valid physical address con-
taining sensitive data. After the kernel clears the present
bit in the corresponding PTE entry, dereferencing the un-
mapped page from user space will cause a terminal fault.

Dangerously, however, despite the fault’s existence,
the L1 data cache still passes the unauthorized data on to
the transient out-of-order execution in case the metadata
present in the PTE entry represents a cached physical ad-
dress. As with previous transient execution attacks [7, 6],
secrets can then be brought from the microarchitectural
transient execution domain into the architecture, e.g., us-
ing a cache-based covert channel [10]. Making things
worse, in case the the OS supports page sizes larger than
4 KB (e.g., 2 MB or 1 GB), the attacker can use the in-
advertent mapping to access a memory range of up to the
page size.

We note here that, since all software intrinsically
shares the same underlying physical address space, in-
advertent virtual to physical mappings created by meta-
data may point to data belonging to the OS kernel, VMM
memory, SGX enclaves, or SMM memory. In the com-
mon case where OSs zero out PTEs when releasing
memory via the munmap system call, attackers can ac-
cess data stored at physical address 0x00.

Experimental Results. We experimentally verified
Foreshadow-OS attacks by using transient execution to
read L1-cached data from pages that have the “present”
bit cleared or if have any of 11 reserved bit set in the PTE
on a machine equipped with an Intel i7-6820HQ CPU.

5 Foreshadow-VMM: Exploiting Con-
trolled Page Table Mappings

While the above Foreshadow-OS variant allows unprivi-
leged adversaries to transiently compute on unauthorized
physical memory locations, they have no direct control
over which exact physical addresses are being accessed.
Foreshadow-type attacks therefore become a lot more
devastating when considering untrusted virtual machines
that directly control the guest physical address input to
the L1 tag comparison (Figure 1).

According to the architectural specification [4], guest
physical addresses undergo an EPT-based translation
process to find the underlying host physical memory ad-
dress. Intel’s analysis [3] revealed that a terminal fault
during the initial guest page table walk causes an early-
out condition, such that the guest physical address is di-
rectly passed to the L1 tag comparison without first pass-
ing the EPT translation stage. Consequently, malicious
virtual machines can control physical address used to
access the L1 cache dring transient instructions. More
specifically, an untrusted malicious guest VM can mod-
ify a PTE in its own guest page table, pointing to ar-
bitrary guest physical memory. This address never un-
dergoes an EPT translation as is treated by the L1 tag
comparison as if it were a host physical address.

4



Physical Core

Logical Core 1 Logical Core 2

L1 Cache

L2 Cache

Victim 
VM

Attacker 
VM

Cloud Server

Victim’s memory Attacker’s memory

Figure 2: Foreshadow-VMM in action. On Intel proces-
sors, the L1 cache is shared between virtual machines
(VMs) running on the same physical core. By carefully
manipulating her own memory accesses, the attacker VM
can read arbitrary victim VM data stored in the L1 cache.

Figure 2 illustrates one scenario where opportunistic
fetching from L1 cache allows a malicious guest VM to
transiently steal host physical memory secrets belonging
to another co-resident VM. Note, however, that the attack
is not limited to HyperThreading victims as Foreshadow-
VMM can extract any secret residing in the L1 data cache
of the physical CPU core (e.g., leftover VMM data after
a hypercall).

6 Foreshadow-SGX

Intel SGX [4] is a set of x86 processor extensions that
enforce strict isolation and attestation guarantees for se-
cure enclaves that live in the address space of a conven-
tional OS process, without having to trust any of the sup-
porting software — including privileged OS kernel and
hypervisor. As illustrated in Figure 1, SGX machinery
performs an additional level of sanity checks after the
legacy address translation process completed, to enforce
strict access control for enclaves and to guard against
direct address remapping attacks [2]. Upon encounter-
ing an unauthorized enclave access, SGX machinery ig-
nores writes and replaces the value being read with the
abort page dummy value −1. Intel SGX’s unique abort
page semantics mechanism prohibits enclave data from
being directly extracted through a plain Meltdown [7]-
style transient execution attack, since they are applied
silently without raising an exception.

In prior work [9], we demonstrated how adversaries
can abuse microarchitectural L1TF behavior to read
cached data from SGX secure enclaves, including full
sealing and attestation keys from Intel’s own architec-
tural enclaves. This work was the first to develop
a novel attack methodology that abuses the untrusted

OS’s control over the page table to provoke terminal
faults when dereferencing enclave memory. Analo-
gous to the Foreshadow-VMM transient EPC bypass
above, Foreshadow-SGX essentially early-outs the ad-
dress translation, passing any cache enclave secrets to the
transient out-of-order execution before the SGX machin-
ery is allowed to replace them with abort page behavior.

Note that our original Foreshadow-SGX [9] attack fur-
thermore proposed an alternative way to provoke termi-
nal fault behavior via EPCM sanity checks when deref-
erencing a rogue virtual memory mapping from a cus-
tomized attacker enclave. This Foreshadow-SGX sub-
variant has been dubbed “Enclave 2 Enclave” (E2E) in
Intel’s analysis [5].

7 Mitigations

We now analyze the various mitigation techniques pro-
posed by Intel [3]. At a high level, the mitigations in-
clude (i) proactively removing secrets from the L1 cache,
(ii) preventing inadvertent mappings that can lead to an
address containing secrets, and finally (iii), adjustments
to scheduling algorithms to prevent two distrusting enti-
ties from running on sibling cores, which share the L1
cache.

7.1 Protecting the Kernel and Processes
Attackers mounting Foreshadow-OS rely on existing
mappings in the page table entries. Since the page ta-
ble permission model can no longer be trusted to suf-
ficiently protect data, the proposed mitigation [5] is to
ensure there are no unintended mappings. There are two
different approaches to achieving this.

First, the operating system may wish to direct any
Foreshadow-OS attack to a special page not containing
any secrets. This approach could be applied for instance
when a virtual page is not intended to be backed by any
physical memory. Under Linux, for example, the last
level page table entries are zero’ed out in such situations.
When during a page table walk the processor reaches a
zero’ed out PTE entry, data located at physical address
0 may be leaked. To mitigate such attacks, Intel pro-
poses [5] to place a zero’ed 4 KB page at that address.
To avoid leaking data through huge (2MB/1GB) pages
from address 0, the Page Size (PS) bit should never be
set in page directory entries (PDE) and page directory
pointer table entries (PDPTE) of non-present pages.

A second approach is to ensure that during a
Foreshadow-OS attack, non-existent physical memory
would be referenced. This is especially valuable when
the operating system wishes to store meta data about
the page that used to be present in memory. For exam-
ple, operating systems may use this approach to track

5



swapped out pages. The maximum number of valid
bits in a physical address is machine specific and de-
noted as MAXPHYADDR. For 4 KB pages, the num-
ber of bits in the PTE representing the physical address
are MAXPHYADDR-12. For example, in machines
which can support at most 236 bytes, MAXPHYADDR
= 36. In most systems, the actual physical memory used
is less than the maximum supported by the processor.
Therefore, the OS can choose to reduce the maximum
supported physical memory to MAXPHYADDR −n.
Whenever the OS needs to clear the present bit in a PTE,
it will also set the n upper bits in the physical address.

For instance, if a PTE points to physical ad-
dress 0x1000, and n = 2, after clearing the present
bit and setting bits 34-35, the PTE will point to
0xc00000000‖0x1000 = 0xc00001000. If an attacker
tries to mount Foreshadow-OS, the speculative execution
will try to search for a cache line matching 0xc00001000.
Since the machine in this example have at most 236−2=34

bytes of physical memory, the maximum valid physical
address is 0x3ffffffff, which is lower than 0xc00001000.

7.2 Protecting the Hypervisor and VMs
Attacks mounted by malicious guest VMs can be pre-
vented by ensuring the L1 cache is free of secret informa-
tion and by ensuring the VMM never runs concurrently
to an untrusted guest VM on the same physical core (i.e.,
on a sibling core). With new microcode updates, Intel
added a mechanism to actively flush the L1 cache (i.e.,
the new IA32 FLUSH CMD MSR). Hypervisors trans-
fer control to guest VMs by executing a VMENTER in-
struction. To mitigate Foreshadow-VMM, hypervisors
should flush the L1 cache prior to executing VMENTER,
erasing any potential secrets.

If HyperThreading is enabled, hypervisors in addition
must make sure that no hypervisor thread is running on
a sibling core together with an untrusted VM. This miti-
gation presents a paradigm shift in managing cores. Typ-
ically, every logical core is managed as an independent
unit of execution.

7.3 Protecting SGX enclaves
The newly released microcode patch, protects SGX en-
claves in two ways: (i) by ensuring no secrets reside
in the L1 cache when the enclave is not executing and
(ii) including the status of HyperThreading during any
key derivation and attestation. The former mitigation
is met by flushing the L1 cache upon any enclave exit
event; either through an explicitly EEXIT instruction or
through an Asynchronous Enclave Exit (AEX). As we
identified [9] that OS-level SGX leaf instructions EWB
and ELDU can be abused to bring enclave secrets into L1

cache, ENCLS instructions have been modified to also
perform an L1 flush before returning.

Even with microcode updates in place, enclave secrets
are still present in the L1 cache while the enclave is exe-
cuting. This is problematic as the L1 cache is shared be-
tween logical cores. Our work [9] demonstrates a proof-
of-concept Foreshadow attack launched from the sibling
of the logical core that executes the enclave. We are
yet to replicate this attack with the microcode patches in
place. Consequently, we are unable to confirm whether
in the presence of HyperThreading SGX is still vulnera-
ble to the Foreshadow attack.

Intel added a mitigation for cross logical core attacks.
With the microcode patches in place, different keys are
derived when HyperThreading is turned on/off. As a
result enclave data sealed when HyperThreading was
turned off, cannot be unsealed while HyperThreading
is active. Also the attestation mechanism is modified
slightly. Quotes incorporate the status of HyperThread-
ing on the machine the quote was generated on. It is left
to the remote entity verifying the attestation, to decide
whether to trust HyperThreading-enabled systems.

This approach poses challenges to businesses provi-
sioning sensitive data to enclaves running on consumer
devices. Requesting non-expert users to disable Hyper-
Threading in the BIOS, is challenging. In addition, dis-
abling HyperThreading affects the entire platform, not
just SGX enclaves. When Intel announced HyperThread-
ing, the technology was advertised to increase the per-
formance of up to 30%. [8] While actual performance
improvements are application-specific [1], the extent to
which users could be persuaded to disable HyperThread-
ing is yet to be determined..

7.4 Protecting SMM Memory
Similarly to the mitigations for securing VMMs and en-
claves, SMM memory is protected through L1 cache
flushing upon executing the RSM instruction to leave
the SMM. To prevent a malicious OS from running on
a sibling logical core alongside SMM execution, SMM
code can “rendezvous” with all logical cores upon both
entry and exit. Effectively, this policy ensures that no
core is running any non-SMM code. This mitigation re-
quires patching the BIOS, which is responsible for load-
ing SMM code. According to Intel [3], most SMM soft-
ware performs a “rendezvous” anyway. Thus only small
BIOS modifications are required.

8 Conclusion

In this paper we analyze the impact of the Foreshadow
attack [9] we discovered and of the Foreshadow-NG at-
tacks, which Intel discovered [5]. The Foreshadow-NG

6



attacks are the first attacks that fully escape the virtual
machine sandbox.

We strongly urge users to update their systems to miti-
gate these attacks, and follow mitigation guidelines pub-
lished by Intel.

References

[1] S. Casey. How to determine the effectiveness
of hyper-threading technology with an applica-
tion. https://software.intel.com/en-
us/articles/how-to-determine-the-
effectiveness-of-hyper-threading-
technology-with-an-application/.

[2] V. Costan and S. Devadas. Intel SGX explained.
Technical report, Computer Science and Artificial
Intelligence Laboratory MIT, 2016. https://
eprint.iacr.org/2016/086.pdf.

[3] Intel. Description and mitigation overview for
L1 Terminal Fault. https://software.
intel.com/security-software-
guidance/software-guidance/l1-
terminal-fault.

[4] Intel. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual – Combined Volumes, December
2017.

[5] Intel. Intel Analysis of L1 Terminal Fault, August
2018.

[6] P. Kocher, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. Spectre attacks:
Exploiting speculative execution. arXiv preprint
arXiv:1801.01203, 2018.

[7] M. Lipp, M. Schwarz, D. Gruss, T. Prescher,
W. Haas, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown. arXiv
preprint arXiv:1801.01207, 2018.

[8] D. Marr, F. Binns, D. Hill, G. Hinton,
D. Koufaty, J. A. Miller, and M. Upton.
Hyper-threading technology architecture
and microarchitecture. Intel Technology
Journal, 6. https://web.archive.
org/web/20121019025809/http:
//www.intel.com/technology/itj/
2002/volume06issue01/vol6iss1_
hyper_threading_technology.pdf.

[9] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F.
Wenisch, Y. Yarom, and R. Strackx. Foreshadow:

Extracting the keys to the Intel SGX kingdom with
transient out-of-order execution. In Proceedings
of the 27th USENIX Security Symposium. USENIX
Association, August 2018.

[10] Y. Yarom and K. Falkner. Flush+reload: A high
resolution, low noise, L3 cache side-channel attack.
In 23rd USENIX Security Symposium, pages 719–
732. USENIX Association, 2014.

7

https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application/
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application/
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application/
https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-an-application/
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://web.archive.org/web/20121019025809/http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
https://web.archive.org/web/20121019025809/http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
https://web.archive.org/web/20121019025809/http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
https://web.archive.org/web/20121019025809/http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf
https://web.archive.org/web/20121019025809/http://www.intel.com/technology/itj/2002/volume06issue01/vol6iss1_hyper_threading_technology.pdf

	Introduction
	Computer Architecture Background
	Foreshadow-NG-type Attacks 
	L1 Terminal Fault
	Adversary Capabilities
	Attack Impact

	Foreshadow-OS: Exploiting Inadvertent Page Table Mappings
	Foreshadow-VMM: Exploiting Controlled Page Table Mappings
	Foreshadow-SGX
	Mitigations
	Protecting the Kernel and Processes
	Protecting the Hypervisor and VMs
	Protecting SGX enclaves
	Protecting SMM Memory

	Conclusion

