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ABSTRACT

SSL (Secure Sockets Layer) is the de facto standard for secure In-
ternet communications. Security of SSL connections against an
active network attacker depends on correctly validating public-key
certificates presented when the connection is established.

We demonstrate that SSL certificate validation is completely bro-
ken in many security-critical applications and libraries. Vulnerable
software includes Amazon’s EC2 Java library and all cloud clients
based on it; Amazon’s and PayPal’s merchant SDKs responsible
for transmitting payment details from e-commerce sites to payment
gateways; integrated shopping carts such as osCommerce, ZenCart,
Ubercart, and PrestaShop; AdMob code used by mobile websites;
Chase mobile banking and several other Android apps and libraries;
Java Web-services middleware—including Apache Axis, Axis 2,
Codehaus XFire, and Pusher library for Android—and all applica-
tions employing this middleware. Any SSL connection from any of
these programs is insecure against a man-in-the-middle attack.

The root causes of these vulnerabilities are badly designed APIs
of SSL implementations (such as JSSE, OpenSSL, and GnuTLS)
and data-transport libraries (such as cURL) which present devel-
opers with a confusing array of settings and options. We analyze
perils and pitfalls of SSL certificate validation in software based on
these APIs and present our recommendations.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; K.4.4 [Computers and Society]: Electronic
Commerce—Security

Keywords

SSL, TLS, HTTPS, public-key infrastructure, public-key certifi-
cates, security vulnerabilities

1. INTRODUCTION
Originally deployed in Web browsers, SSL (Secure Sockets Lay-

er) has become the de facto standard for secure Internet communi-
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cations. The main purpose of SSL is to provide end-to-end security
against an active, man-in-the-middle attacker. Even if the network
is completely compromised—DNS is poisoned, access points and
routers are controlled by the adversary, etc.—SSL is intended to
guarantee confidentiality, authenticity, and integrity for communi-
cations between the client and the server.

Authenticating the server is a critical part of SSL connection es-
tablishment.1 This authentication takes place during the SSL hand-
shake, when the server presents its public-key certificate. In order
for the SSL connection to be secure, the client must carefully verify
that the certificate has been issued by a valid certificate authority,
has not expired (or been revoked), the name(s) listed in the certifi-
cate match(es) the name of the domain that the client is connecting
to, and perform several other checks [14, 15].

SSL implementations in Web browsers are constantly evolving
through “penetrate-and-patch” testing, and many SSL-related vul-
nerabilities in browsers have been repaired over the years. SSL,
however, is also widely used in non-browser software whenever
secure Internet connections are needed. For example, SSL is used
for (1) remotely administering cloud-based virtual infrastructure
and sending local data to cloud-based storage, (2) transmitting cus-
tomers’ payment details from e-commerce servers to payment pro-
cessors such as PayPal and Amazon, (3) logging instant messenger
clients into online services, and (4) authenticating servers to mobile
applications on Android and iOS.

These programs usually do not implement SSL themselves. In-
stead, they rely on SSL libraries such as OpenSSL, GnuTLS, JSSE,
CryptoAPI, etc., as well as higher-level data-transport libraries,
such as cURL, Apache HttpClient, and urllib, that act as wrappers
around SSL libraries. In software based on Web services, there is
an additional layer of abstraction introduced by Web-services mid-
dleware such as Apache Axis, Axis 2, or Codehaus XFire.

Our contributions. We present an in-depth study of SSL connec-
tion authentication in non-browser software, focusing on how di-
verse applications and libraries on Linux, Windows, Android, and
iOS validate SSL server certificates. We use both white- and black-
box techniques to discover vulnerabilities in validation logic. Our
main conclusion is that SSL certificate validation is completely bro-

ken in many critical software applications and libraries. When
presented with self-signed and third-party certificates—including
a certificate issued by a legitimate authority to a domain called
AllYourSSLAreBelongTo.us —they establish SSL connec-
tions and send their secrets to a man-in-the-middle attacker.

1SSL also supports client authentication, but we do not analyze it
in this paper.



This is exactly the attack that SSL is intended to protect against.
It does not involve compromised or malicious certificate authori-
ties, nor forged certificates, nor compromised private keys of legit-
imate servers. The only class of vulnerabilities we exploit are logic
errors in client-side SSL certificate validation.

The root cause of most of these vulnerabilities is the terrible de-
sign of the APIs to the underlying SSL libraries. Instead of ex-
pressing high-level security properties of network tunnels such as
confidentiality and authentication, these APIs expose low-level de-
tails of the SSL protocol to application developers. As a conse-
quence, developers often use SSL APIs incorrectly, misinterpreting
and misunderstanding their manifold parameters, options, side ef-
fects, and return values. In several cases, we observed developers
introducing new vulnerabilities when attempting to “fix” certificate
validation bugs. Furthermore, deveopers often do not understand
which security properties are or are not provided by a given SSL
implementation: for example, they use SSL libraries that do not
validate certificates even when security is essential (e.g., connect-
ing to a payment processor). More prosaic, yet deadly causes in-
clude intermediate layers of the software stack silently disabling
certificate validation and developers turning off certificate valida-
tion accidentally (e.g., for testing) or intentionally.

2. OVERVIEW OF OUR RESULTS
Our study uncovered a wide variety of SSL certificate valida-

tion bugs. Affected programs include those responsible for manag-
ing cloud-based storage and computation, such as Amazon’s EC2
Java client library and Elastic Load Balancing API Tools, Apache
Libcloud, Rackspace iOS client, and Windows-based cloud storage
clients such as ElephantDrive and FilesAnywhere.

Java-based Web-services middleware, such as Apache Axis, Axis
2, and Codehaus XFire, is broken, too. So is the Android library
for Pusher notification API and Apache ActiveMQ implementation
of Java Message Service. All programs employing this middleware
are generically insecure.

Certificate validation bugs are pervasive in “merchant SDKs,”
which typically run on e-commerce servers (e.g., online stores) and
are responsible for transmitting customers’ financial details to pay-
ment processing gateways. Broken libraries include Amazon Flex-
ible Payments Service (both Java and PHP), as well as PayPal Pay-
ments Standard and PayPal Invoicing (both in PHP), PayPal Pay-
ments Pro, Mass Pay, and Transactional Information SOAP (all in
Java). Most payment modules for integrated shopping carts, such
as ZenCart, Ubercart, PrestaShop, and osCommerce, do not val-
idate certificates, either. A man-in-the-middle attack enables the
attacker to harvest credit card numbers, names, addresses, etc. of
the customers of any merchant who uses one of these programs for
payment processing. Mobile app providers who use AdMob’s sam-
ple code to link app instances to their AdMob accounts are vulner-
able, too, enabling the attacker to capture the developer’s account
credentials and gain access to all of her Google services.

Instant messenger clients such as Trillian and AIM do not val-
idate certificates correctly, either. A man-in-the-middle attack on
Trillian yields login credentials for all Google (including Gmail),
Yahoo!, and Windows Live services (including SkyDrive).

Not the most interesting technically, but perhaps the most devas-
tating (because of the ease of exploitation) bug is the broken certifi-
cate validation in the Chase mobile banking app on Android. Even
a primitive network attacker—for example, someone in control of
a malicious Wi-Fi access point—can exploit this vulnerability to
harvest the login credentials of Chase mobile banking customers.
Other insecure Android software includes Breezy, a “secure” print-
ing app, and the ACRA library for application crash reporting.

In summary, SSL connections established by any of the above

programs are insecure against a man-in-the-middle attack. All
vulnerabilities have been empirically confirmed.

Causes. For the most part, the actual SSL libraries used in these
programs are correct. Yet, regardless of which well-known library
the software relies on—whether JSSE, OpenSSL, GnuTLS, or Cryp-
toAPI, used directly or wrapped into a data-transport library such
as Apache HttpClient or cURL—it often finds a way to end up with
broken or disabled SSL certificate validation.

The primary cause of these vulnerabilities is the developers’ mis-
understanding of the numerous options, parameters, and return val-
ues of SSL libraries. For example, Amazon’s Flexible Payments
Service PHP library attempts to enable hostname verification by
setting cURL’s CURLOPT_SSL_VERIFYHOST parameter to true. Un-
fortunately, the correct, default value of this parameter is 2; setting
it to true silently changes it to 1 and disables certificate validation.
PayPal Payments Standard PHP library introduced the same bug
when updating a previous, broken implementation. Another ex-
ample is Lynx, a text-based browser which is often used program-
matically and thus included in our study. It checks for self-signed
certificates—but only if GnuTLS’s certificate validation function
returns a negative value. Unfortunately, this function returns 0 for
certain errors, including certificates signed by an untrusted author-
ity. Chain-of-trust verification in Lynx is thus broken.

Developers often misunderstand security guarantees provided by
SSL libraries. For example, JSSE (Java Secure Socket Extension)
has multiple interfaces for managing SSL connections. The “ad-
vanced” SSLSocketFactory API silently skips hostname verifica-
tion if the algorithm field in the SSL client is NULL or an empty
string rather than HTTPS. This is mentioned in passing in the JSSE
reference guide, yet many Java implementations of SSL-based pro-
tocols use SSLSocketFactory without performing their own host-
name verification. Vulnerable libraries include Apache HttpClient
version 3.* and the Weberknecht implementation of WebSockets.
Any Java program based on these libraries is generically insecure
against a man-in-the-middle attack. Vulnerable programs include
SOAP Web-services middleware such as Apache Axis and Code-
haus XFire, as well as any software built on top of it (for ex-
ample, Amazon’s EC2 client library), any Android app that uses
Pusher API to manage real-time messaging (for example, GitHub’s
Gaug.es), clients of Apache ActiveMQ servers, etc.

Other bugs include using incorrect regular expressions for host-
name matching, not checking the results of certificate validation
correctly, accidentally or deliberately disabling validation, etc.

Lessons. First, the state of adversarial testing appears to be excep-
tionally poor even for critical software such as mobile banking apps
and merchant SDKs responsible for managing secure connections
to payment processors. Most of the vulnerabilities we found should
have been discovered during development with proper unit testing.

Second, many SSL libraries are unsafe by default, requiring high-
er-level software to correctly set their options, provide hostname
verification functions, and interpret return values. As we show,
software that relies on these libraries is often not up to the task.

Third, even safe-by-default libraries, such as cURL’s wrapper
around OpenSSL, are misused by developers that misinterpret the
meaning of various options. This calls for better documentation and
more rigorous formalization of API semantics. In particular, APIs
should present high-level abstractions to developers, such as “con-
fidential and authenticated tunnel,” as opposed to requiring them to
explicitly deal with low-level details such as hostname verification.

Fourth, SSL bugs are often hidden deep inside layers of middle-
ware, above the actual SSL implementation but below the applica-



tion, making the problem hard to locate and repair, and effectively
taking it out of application developers’ hands.

Fifth, least interesting technically but still critically important,
we observed many cases of developers deliberately disabling cer-
tificate validation, while assuring both users and higher-level pro-
grams that SSL is being supported but not informing them that pro-
tection against active attacks has been turned off.

3. OVERVIEW OF SSL

3.1 Threat model
We assume an active, man-in-the-middle network attacker who

may control network routers or switches, Wi-Fi access points, and/or
DNS. She may also control one or more servers and possess valid
SSL certificates for these servers. When an SSL client attempts to
connect to a legitimate server, the attacker can mislead it about the
server’s network address (e.g., through DNS poisoning) and trick it
into connecting to an attacker-controlled server instead.

Our attacker (1) does not have access to the private keys of le-
gitimate servers, (2) does not control any certificate authorities, (3)
cannot forge certificates. Even if she succeeds in spoofing the ad-
dress of a legitimate server, a correctly implemented SSL client
should refuse to accept the malicious server’s certificate because of
a mismatch between the name(s) on the certificate and the domain
to which the client is connecting.

(optional)

(optional)

server cert.

(optional)

client hello

target of our attacks

server

server

hello

cert.
client cert. request

client key exchange

client cert.

change cipher spec

encrypted data

SSL Client SSL Server

validate

validate
client cert.

Figure 1: Simplified overview of SSL handshake.

3.2 SSL certificate validation
An SSL connection starts with a handshake between the client

and the server. The handshake protocol is summarized in Figure 1;
see RFC 6101 [16] for a complete description.

We focus on the client’s validation of the server certificate. All
SSL implementations we tested use X.509 certificates. The com-
plete algorithm for validating X.509 certificates can be found in
RFC 5280 [15] and RFC 2818 [14]. In this paper, we consider two
of the checks; both are critical for security against active attacks.

Chain-of-trust verification. Each X.509 certificate has an “issuer”
field that contains the name of the certificate authority (CA) that
issued the certificate. Every SSL client is configured with a list of
certificates for trusted root CAs.

In addition to its own certificate, the server sends the certificate
of the issuing CA. If the issuing CA is not a root CA, the server
also sends a list of certificates of higher-level CAs all the way to
a root CA. The client attempts to build a chain starting from the
server’s certificate at the bottom. Each certificate in the chain must
be signed by the CA immediately above it; the root CA must be one
of the client’s trusted CAs. The client also verifies that the certifi-

cates have not expired and that the certificates of the intermediate
CAs have the CA bit set in the “Basic Constraints” field.

Hostname verification. After the chain of trust is established, the
client must verify the server’s identity. RFC 2818 advises the im-
plementors to use “SubjectAltNames” as the main source of server
identifiers and support “Common Name” for backward compatibil-
ity only, but most of the software we tested does it the other way
around and checks “Common Name” first. After building the list
of server identifiers, the client attempts to match the fully qualified
DNS name of the requested server to one of the identifiers.

If the client finds an exact match in the list of server identi-
fiers, verification is done by straightforward string comparison. The
client may also find a wildcard name in the list of identifiers. The
rules for wildcard matching are fairly complex [14, 17], especially
concerning international character sets.

Certificate revocation and X.509 extensions. This paper focuses
on verifying the server’s identity, but full certificate validation in-
volves many more checks. These checks are essential for security,
yet are handled poorly or not at all by non-browser software.

For example, some SSL libraries such as OpenSSL implement
certificate revocation, but require the application to provide the
certificate revocation list (CRL). The applications we analyzed do
not avail themselves of this facility. Furthermore, libraries such as
JSSE require the application to check validity of the CRL on its
own. Most applications don’t bother. Other SSL libraries, such as
Python’s ssl, do not expose a method for CRL checking.

Some X.509 certificate extensions contain security-critical infor-
mation such as key usage (e.g., is the CA allowed to use this key for
signing certificates?), name constraints (restricting the names that
a sub-CA can certify), and certificate policies, described in RFC
2527 [13]. For instance, a CA may assign different levels of trust
to different sub-CAs, but the application must provide a policy that
takes advantage of this information. In practice, these extensions
are largely neglected. For example, until recently OpenSSL did not
validate name constraints correctly, while cURL does not even have
an interface for specifying the application’s certificate policy.

Attacks exploiting improper treatment of certificate revocation
and X.509 extensions are somewhat different from the “pure” man-
in-the-middle model considered in this paper. We leave their de-
tailed analysis to future work.

4. SSL ABSTRACTIONS
Depending on its needs, an application can “plug” into SSL at

different levels of abstraction. At the lowest level, there are many
popular SSL implementations with different features, licenses, and
hardware requirements: OpenSSL, JSSE, CryptoAPI, NSS, yaSSL,
GnuTLS, BouncyCastle, and others. These libraries are mostly
oblivious to protocols transported over SSL. Therefore, to avoid
having to parse HTTP messages on their own, applications that in-
volve HTTP over SSL (HTTPS) typically do not use them directly.
Instead, they employ one of the many HTTPS libraries (see Sec-
tion 4.2), which in turn use SSL libraries internally. Applications
that use SOAP- or REST-based Web services require additional
middleware on top of HTTPS or WebSockets (see Figure 2).

4.1 SSL libraries

OpenSSL. OpenSSL only provides chain-of-trust verification; ap-
plications must supply their own hostname verification code. This
is typical for low-level SSL libraries. Different application-layer
protocols such as HTTPS, LDAP, etc. have different notions of
what constitutes a valid hostname and what it means for a hostname
to match the name(s) listed in the certificate. Therefore, hostname
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Figure 2: Protocol stack.

verification must be managed either by the application itself, or by
a data-transport wrapper such as cURL.

Proper hostname verification for OpenSSL and CryptoAPI is dis-
cussed in [21, Chap. 10.8], assuming the chain of trust has been
verified correctly. As discussed in [21, Chap. 10.5], the latter is
error-prone due to the complexity of the underlying API. OpenSSL
allows applications to customize chain-of-trust verification by pro-
viding a callback function or modifying configuration variables such
as “verify depth” and “verify mode” as shown in Figure 3.

A program using OpenSSL can perform the SSL handshake by
invoking the SSL_connect function. A high-level overview of the
handling of different configurations and callbacks is shown in Al-
gorithm 1. They can have complex interactions.

Some certificate validation errors are signaled through the return
values of SSL_connect, while for other errors SSL_connect returns
OK but sets internal “verify result” flags. Applications must call
SSL_get_ verify_result function to check if any such errors oc-
curred. This approach is error-prone (see Section 7.6).

Algorithm 1 Outline of SSL_connect control flow.

while chain of trust contains no trusted CA do
if chain length <verify_depth then

Try to extend chain of trust by 1 level
Set ERROR appropriately if any error

else
Set ERROR to ‘incomplete chain’

end if
if ERROR then

verify_result = error
if verify_callback == NULL then

if verify_mode != 0 then
Print error and terminate connection.

end if
else

ret = verify_callback(preverify_ok = 0, . . . )
if (verify_mode != 0) and (ret == 0) then

Print error and terminate connection.
end if

end if
if ERROR is not related to incorrect parsing then

return 1

else
return ERROR

end if
else

ret = verify_callback(preverify_ok = 1, . . . )
if (verify_mode != 0) and (ret == 0) then

Print error and terminate connection.
end if

end if
end while

return 1

verify

mode

verify
callback

verify
depth fd

SSL_CTX_set_verify

default:
0

default:

None

default:
9

verify_result

SSL_CTX SSL

structuresdata
internal

SSL_CTX_set_verify_depth SSL_set_verify_depth

SSL_set_fdSSL_set_verifySSL_new

OpenSSL’s

SSL_get_verify_result SSL_connect

(see Algorithm 1)

Figure 3: OpenSSL API for setting up SSL connections with

the default chain-of-trust verification.

The certificate validation function in GnuTLS, gnutls_certif-
icate_verify_peers2, has similarly atrocious error reporting. It

takes a reference to tls_status as an argument and sets it to an
appropriate error code if validation fails. For some errors (e.g.,
insufficient credentials or no certificate found), it returns a negative
value; for others (e.g., self-signed certificate), it sets the error code
but returns zero. In Section 7.4 we show that application developers
misunderstand this complex relationship between the error status
and the return value, resulting in broken certificate validation.

JSSE. Java Secure Socket Extension (JSSE) provides numerous in-
terfaces through which Java applications—including Android mo-
bile apps—can establish SSL connections.

The low-level API is SSLSocketFactory. Depending on how the
SSL client is created, this API may or may not perform hostname
verification. The following code sample is taken from X509Trust

ManagerImpl.checkIdentity in Java 6 update 31:

private void checkIdentity(String hostname,

X509Certificate cert, String algorithm)

throws CertificateException {

if (algorithm != null && algorithm.length() != 0) {

....

if (algorithm.equalsIgnoreCase("HTTPS")) {

HostnameChecker.getInstance(HostnameChecker.TYPE

_TLS).match(hostname, cert);

} else if (algorithm.equalsIgnoreCase("LDAP")) {

HostnameChecker.getInstance(HostnameChecker.TYPE

_LDAP).match(hostname, cert);

} else {

throw new CertificateException(

"Unknown identification algorithm: " + algorithm);

}

}

}

The checkIdentity method throws an exception if the algorithm
field is set to anything other than HTTPS or LDAP. This is different
from, for example, OpenSSL, which returns a value even if verifi-
cation fails and expects the application to check this value.

JSSE APIs such as HttpsClient and HttpsURLConnection call
try SetHostnameVerification when creating SSL clients. This
method sets the algorithm field to HTTPS. The above code thus
invokes HostnameChecker and verifies the name in the certificate.

If the algorithm field in the client data structure is NULL or an
empty string, checkIdentity silently skips hostname verification
without throwing an exception. We conjecture that this behav-
ior is designed to accommodate implementors of certificate-based
protocols other than HTTPS or LDAP who may want to re-use



JSSE’s default trust manager for chain-of-trust verification but pro-
vide their own, protocol-specific hostname verification.

On February 14, 2012, Java 7 update 3 was released. The code
for certificate validation is different from Java 6, but its behav-
ior is similar: if the algorithm field is NULL or an empty string,
checkIdentity is never invoked.

private void checkTrusted(X509Certificate[] chain,

String authType, Socket socket, boolean isClient)

throws CertificateException {

...

/ / check e n d p o i n t i d e n t i t y

String identityAlg = sslSocket.getSSLParameters().

getEndpointIdentificationAlgorithm();

if (identityAlg != null && identityAlg.length != 0)

{

String hostname = session.getPeerHost();

checkIdentity(hostname, chain[0], identityAlg);

}

}

In SSL clients created using “raw” SSLSocketFactory (as op-
posed to HttpsClient or HttpsURLConnection wrappers), the algo-
rithm field is NULL, thus JSSE does not perform hostname verifi-
cation. The responsibility for hostname verification is delegated to
the software running on top of JSSE. This feature is not explained
in the API documentation. Instead, the following warning can be
found deep inside the JSSE reference guide:2

When using raw SSLSockets/SSLEngines you should
always check the peer’s credentials before sending any
data. The SSLSocket and SSLEngine classes do not
automatically verify that the hostname in a URL matches
the hostname in the peer’s credentials. An application
could be exploited with URL spoofing if the hostname
is not verified.

The prevalence of Java software that uses SSLSocketFactory to
create SSL clients yet does not perform hostname verification (see
Section 4.2) suggests that developers are not aware of this feature.
The existence of alternative JSSE interfaces that do perform host-
name verification only increases the confusion.

4.2 Data-transport libraries
In practice, most applications rely on data-transport frameworks

to establish HTTPS connections. These frameworks use SSL li-
braries internally in a way that is usually opaque to applications.

Apache HttpClient. Apache HttpClient3 is a client-side HTTP(S)
Java library based on JDK. The latest version is 4.2.1, published
on June 29, 2012, but most existing software employs older, 3.*
versions. Apache HttpClient is used extensively in Web-services
middleware such as Apache Axis 2 (see Section 8) because native
JDK does not support SOAP Web services. Furthermore, Apache
HttpClient provides better performance than JDK for functionali-
ties such as sending HTTP POST requests.

Apache HttpClient uses JSSE’s SSLSocketFactory to establish
SSL connections. As explained in Section 4.1, this means that
Apache HttpClient must perform its own hostname verification.
This leads to numerous vulnerabilities in software based on older
versions on HttpClient that do not verify hostnames (Section 7.5).

Furthermore, Apache HttpClient uses HttpHost data structure to
describe HTTP(S) connections. HttpHost does not have any inter-

2http://docs.oracle.com/javase/6/docs/
technotes/guides/security/jsse/JSSERefGuide.
html
3
http://hc.apache.org/httpcomponents-client-
ga/

nal consistency checks: for example, it allows connections to port
443 to have HTTP as the scheme. In Section 7.8, we show how this
leads to errors even in code implemented by SSL experts.

Weberknecht. Weberknecht4 is a Java implementation of the Web-
Sockets protocol. It uses SSLSocketFactory but does not perform
its own hostname verification. Any Java program that employs We-
berknecht is vulnerable to a man-in-the-middle attack.

cURL. cURL5 is a popular tool and library (libcurl) for fetching
data from remote servers. Since version 7.10, cURL validates SSL
certificates by default. Internally, it uses OpenSSL to verify the
chain of trust and verifies the hostname itself. This functionality is
controlled by parameters CURLOPT_SSL_VERIFYPEER (default value:
true) and CURLOPT_SSL_VERIFYHOST (default value: 2).

This interface is almost perversely bad. The VERIFYPEER param-
eter is a boolean, while a similar-looking VERIFYHOST parameter is
an integer. The following quote from the cURL manual explains
the meaning of CURLOPT_SSL_VERIFYHOST:

1 to check the existence of a common name in the SSL
peer certificate. 2 to check the existence of a common
name and also verify that it matches the hostname pro-
vided. In production environments the value of this
option should be kept at 2 (default value).

Well-intentioned developers not only routinely misunderstand
these parameters, but often set CURLOPT_SSL_VERIFY HOST to TRUE,
thereby changing it to 1 and thus accidentally disabling hostname
verification with disastrous consequences (see Section 7.1).

PHP. PHP provides several methods for establishing SSL connec-
tions. For example, fsockopen, which opens a raw socket to the
remote server, can be used to connect to SSL servers by putting
“ssl://” in the URL. Even though fsockopen does not perform any
certificate checks whatsoever, PHP application developers routinely
use it for SSL connection establishment (see Section 9).

PHP also provides a cURL binding, which uses cURL’s default
settings to establish SSL connections with proper certificate valida-
tion. As we show in Sections 7.1, 7.2, and 7.3, application develop-
ers often set cURL options incorrectly, overriding the defaults and
breaking certificate validation.

Python. Several Python modules can be used for SSL connection
establishment. urllib, urllib2, and httplib connect to SSL servers
but do not check certificates. This is clearly documented in a bright
pink box on the urllib front page:6

Warning: When opening HTTPS URLs, it does not
attempt to validate the server certificate. Use at your
own risk!

Nevertheless, even high-security applications routinely use these
modules for SSL connection establishment (see Section 9).

Python also has an ssl module. This module verifies the certifi-
cate’s chain of trust, but not the hostname. The application must do
its own hostname verification. In Python version 3, the ssl module
introduced the match_hostname method for hostname verification,
but it must be explicitly called by the application.

4
http://code.google.com/p/weberknecht/

5
http://curl.haxx.se/

6
http://docs.python.org/library/urllib.html



5. SSL IN NON-BROWSER SOFTWARE
We analyze a representative sample of non-browser software ap-

plications and libraries that use SSL for secure Internet connec-
tions. Some programs, such as instant messenger clients and sim-
ple mobile banking apps, are fairly straightforward in their use of
SSL. Others, especially middleware libraries, use SSL as part of a
multi-layer software stack. Many of the programs we analyze trans-
mit extremely sensitive data—private files of individual users in the
case of cloud clients, financial information of customers in the case
of merchant SDKs, developer account credentials in the case of
mobile advertising software—over potentially insecure public net-
works, thus it is absolutely critical that they use SSL correctly.

Cloud client APIs. As cloud-computing platforms such as Ama-
zon EC2 grow in popularity, their operators supply client SDKs
through which third-party software can transmit user data to cloud-
based storage, manage cloud-based computation (e.g., start and ter-
minate virtual instances), and access other cloud services. For ex-
ample, Amazon provides EC2 API tools in Java, PHP, Python, and
Perl. Apache Libcloud is an example of an independent library for
accessing multiple cloud providers.

Merchant payment SDKs. Operators of e-commerce websites of-
ten rely on third parties such as PayPal and Amazon Flexible Pay-
ments Service (FPS) to process their customers’ payments. Pay-
ment processors provide merchant SDKs (software development
kits) in a variety of languages. These libraries are designed to be
integrated into the back end of e-commerce websites. Merchant
software uses them to transmit customers’ payment details and/or
receive notifications when payments are made by customers.

An online store typically has two options for payment process-
ing. The first option is to have the customer enter payment details
directly into the payment processor’s website. When the customer
checks out, the merchant’s website redirects her browser to PayPal
or Amazon, where the customer enters her name, credit or debit
card number, etc. The merchant never sees these details. Once the
payment is complete, the payment processor redirects the customer
back to the merchant’s website and notifies the merchant.

The merchant’s site runs a daemon listening for IPN (Instant Pay-
ment Notification) calls from the payment processor. Upon receiv-
ing a notification, the merchant is advised to verify that the call in-
deed originated from the processor (some merchants skip this step,
opening the door to “shop-for-free” attacks [23]). The merchant
then completes the transaction with the customer.

The second option is preferred by larger, more established stores.
It does not require the customer to leave the merchant’s website and
allows the merchant to collect payment details directly from the
customer. The back-end software on the merchant’s website then
transmits these details to the payment processor’s gateway over an
SSL connection and receives the confirmation that the payment suc-
ceeded (often over the same SSL connection).

Fig. 4 shows schematically the interaction between the merchant’s
server and the payment gateway. The SSL client is the merchant’s
back-end software (running on the merchant’s server), while the
payment gateway acts as the SSL server.

We analyzed SSL connection establishment in popular merchant
SDKs, including Java and PHP SDKs for Amazon Flexible Pay-
ments Service and multiple interfaces to PayPal: Payments Pro,
Transactional Information, and Mass Pay (all in Java), as well as
Payments Standard and Invoicing (PHP). We also analyzed both
Amazon’s and PayPal’s utilities that merchants can use to verify
the origin of IPN (Instant Payment Notification) calls.

We also analyzed several open-source shopping carts written in
PHP: osCommerce, ZenCart, Ubercart, and PrestaShop. Shopping
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Figure 4: Merchant SDK interacting with payment processor.

carts are an important component of e-commerce websites. They
keep track of customers’ shipping and billing information and al-
low them to purchase multiple items in one transaction. When the
customer checks out, the shopping cart generates a summary of the
purchases and the total price and sends it to the payment gateway.
Shopping carts include modules for many payment processors.

Web-services middleware. Many modern programs rely on Web
services. A Web service is “a software system designed to support
interoperable machine-to-machine interaction over a network.”7 A
service has an interface described in a machine-readable XML for-
mat. Different providers may provide different concrete implemen-
tations of this interface. Other systems interact with the service by
sending and receiving messages.

Messages to and from Web services are sent using XML-based
Simple Object Access Protocol (SOAP) or REpresentational State
Transfer (REST). From the viewpoint of the client software, a Web
service can be thought of as providing a remote procedure call
(RPC) interface, while SOAP or REST middleware marshals and
unmarshals arguments of RPC calls.

To interact with such a Web service—for example, if a cloud
client implemented in Java wants to interact with Amazon EC2 —
existing Java software often uses SOAP middleware such as Apache
Axis, Axis 2, or Codehaus XFire (see Section 8). Similarly, if
an Android app needs real-time “push” notifications, it may use
a client-side library to connect to the REST-based Pusher service.8

These middleware frameworks are responsible for transmitting
Web-service messages over the network. If the connection must be
secure, the middleware typically uses SSL but delegates actual SSL
connection management to a data-transport library such as Apache
HttpClient or Weberknecht (see Section 4.2).

Mobile advertising. Mobile advertising services such as AdMob
supply software that providers of mobile apps install on their sites.
When a new app instance is initialized on a customer’s phone, it
connects to the provider’s site, which in turn notifies the AdMob
server so that all ads shown to this app instance will be associated
with the provider’s account (to enable ad revenue sharing, etc.).
The connection from the app provider’s site to the AdMob server
contains the provider’s credentials and must be protected by SSL.

6. EXPERIMENTAL TESTBED
Our primary methodology for the initial discovery of SSL cer-

tificate validation bugs is black-box fuzzing. We test applications
and libraries implementing SSL client functionality on two Dell
laptops running Microsoft Windows 7 Professional Service Pack

7
http://www.w3.org/TR/ws-arch/

8
http://pusher.com



1 and Ubuntu Linux 10.04, respectively. Mobile applications are
tested on a Nexus One smartphone running Android 2.3.6 and an
iPad 2 running iOS 4.2.1.

We use local DNS cache poisoning to divert clients’ connections
to a simulated attack server executing on an old Dell laptop with
Ubuntu Linux 10.04. To simulate a man-in-the-middle attacker, we
built two prototypes: one in Java, using JKS keystore to manage
the attacker’s certificates and keys, the other in C, using OpenSSL
for certificate and key management. We also used Fiddler, a Web
debugging proxy [9]. If Fiddler encounters a connection request
to a server it has not seen before, it creates a new certificate with
the common name matching the requested name and stores it in
its repository; otherwise, it retrieves an existing certificate from
its repository. Fiddler then presents the certificate to the client,
allowing us to simulate a man-in-the-middle attacker who presents
self-signed certificates with correct common names. In addition,
we enabled Fiddler to capture and decrypt HTTPS connections.

Our simulated “man-in-the-middle” server presents the client with
several certificates: (1) a self-signed certificate with the same com-
mon name as the host the client is attempting to connect to, (2) a
self-signed certificate with an incorrect common name, and (3) a
valid certificate issued by a trusted certificate authority to a domain
called AllYourSSLAreBelongTo.us. If the client establishes
an SSL connection, the attack server decrypts traffic sent by the
client. It can then establish its own SSL connection to any legiti-
mate server specified by the attacker and forward the client’s traffic.
The attack server also listens for the legitimate server’s response,
decrypts and logs it, re-encrypts it with the symmetric key the at-
tacker shares with the client and forwards it to the client.

If we observed a particular client successfully establishing an
SSL connection when presented with any of the attack certificates,
we analyzed the source code of the client or, in the case of closed-
source applications, the results of reverse-engineering, decompi-
lation, and runtime traces (focusing in particular on calls to SSL
libraries) in order to find the root cause of the vulnerability.

In Sections 7 through 10, we describe the vulnerabilities in spe-
cific programs, arranged by error type.

7. MISUNDERSTANDING THE SSL API

7.1 Amazon Flexible Payments Service (PHP)
Amazon Flexible Payments Service (FPS) provides SDKs that

merchants use to transmit customers’ payment details to the FPS
gateway. The PHP version of the FPS SDK uses a wrapper around
the libcurl library (see Section 4.2) to establish an SSL connection
to the gateway. cURL’s options for certificate validation are set in
src\Amazon\FOPS\Client.php as follows:

curl_setopt($curlHandle, CURLOPT_SSL_VERIFYPEER, true);

curl_setopt($curlHandle, CURLOPT_SSL_VERIFYHOST, true);

...

/ / E x e c u t e t h e r e q u e s t

$response = curl_exec($curlHandle);

This well-intentioned code contains a fatal mistake. cURL’s de-
fault value of CURLOPT_SSL_VERIFYHOST is correctly set to 2. In the
curl_setopt($curlHandle,CURLOPT_SSL_VERIFYHOST, true) call,
true silently turns into 1, overriding the default and instructing
cURL to check the existence of any common name in the certificate
(Section 4.2), which may or may not match the name requested.

Any PHP code using this Amazon-provided SDK to establish an
SSL connection to the Amazon Flexible Payments Service gateway
is insecure against a man-in-the-middle attack.

The URL verification utility—found in src\Amazon\IpnRe-
turnUrlValidation\SignatureUtilsForOutbound.

php—is broken in a very similar way. This utility is critically im-
portant because it is used by merchants to verify the origin of the
calls informing them that a customer’s payment has been success-
fully processed (see Section 5). Because Amazon’s PHP SDK does
not correctly verify the origin of the IPN call, e-commerce sites
using it may be vulnerable to “shop-for-free” attacks [23].

7.2 PayPal Payments Standard and
PayPal Invoicing (PHP)

PayPal Payments Standard SDK implemented in PHP uses cURL.
The previous version disabled all certificate validation checks:

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, FALSE);

The version released on April 27, 2012, “fixes” the problem:

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, TRUE);

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, TRUE);

As in Section 7.1, this code overrides the correct default value of
CURLOPT_SSL_VERIFYHOST and breaks hostname verification.

PayPal Invoicing contains similarly broken code:

public function setHttpTrustAllConnection(

$trustAllConnection)

{

$this->curlOpt[CURLOPT_SSL_VERIFYPEER] =

!$trustAllConnection;

$this->curlOpt[CURLOPT_SSL_VERIFYHOST] =

!$trustAllConnection;

}

Any PHP code using these PayPal-provided SDKs to establish
an SSL connection to PayPal’s payment processing gateway is in-
secure against a man-in-the-middle attack.

7.3 PayPal IPN in ZenCart
ZenCart’s functionality for PayPal IPN shows a profound misun-

derstanding of cURL’s parameters. It disables certificate validation
entirely, yet attempts to enable hostname verification—even though
the latter has no effect if certificate validation is disabled.

$curlOpts=array( ...

CURLOPT_SSL_VERIFYPEER => FALSE,

CURLOPT_SSL_VERIFYHOST => 2

... );

7.4 Lynx
Lynx is a text-based browser, included in our study because it is

often used programmatically by other software. It relies on GnuTLS
to validate SSL certificates:

ret = gnutls_certificate_verify_peers2(handle->gnutls_

state, &tls_status);

if (ret < 0) {

int flag_continue = 1;

char *msg2;

if (tls_status & GNUTLS_CERT_SIGNER_NOT_FOUND) {

msg2 = gettext("no issuer was found");

} else if (tls_status & GNUTLS_CERT_SIGNER_NOT_CA) {

msg2 = gettext("issuer is not a CA");

} else if (tls_status & GNUTLS_CERT_SIGNER_NOT_FOUND)

{

msg2 = gettext("the certificate has no known issuer"

);

} else if (tls_status & GNUTLS_CERT_REVOKED) {

msg2 = gettext("the certificate has been revoked");

} else {



msg2 = gettext("the certificate is not trusted"); }

... }

This code misinterprets the semantics of gnutls_certificate_

verify_peers2. As explained in Section 4.1, this function indeed
sets the tls_status code if certificate validation fails, but for cer-
tain errors—including self-signed certificates!—it returns 0. Even
though the above code includes two identical checks for GNUTLS_

CERT_SIGNER_NOT_FOUND, neither check is ever executed when GNU-

TLS_CERT_SIGNER_NOT_FOUND is actually true! In this case hostname
verification is correct, but chain-of-trust verification is broken.

7.5 Apache HttpClient
The most widely used version of Apache HttpClient is 3.1, re-

leased in 2007. This library, as well as its earlier versions, sets
up SSL connections using JSSE’s SSLSocketFactory without per-
forming its own hostname verification (see Sections 4.1 and 4.2).
As a consequence, Apache HttpClient 3.* accepts any certificate
with a valid chain of trust, regardless of the name. As mentioned in
Section 4.2, the same bug occurs in Weberknecht.

The hostname verification bug in HttpClient was fixed in version
4.0-alpha1 [1]. The current version, 4.2.1, has its own hostname
verifier and delegates chain-of-trust verification to JSSE. Unfortu-
nately, as we show in Section 8, the existence of a correct imple-
mentation of HttpClient has had little effect on the security of appli-
cations that rely on HttpClient for SSL connection establishment.
Apache HttpClient 4.* involved a major architectural re-design,
thus much of legacy and even new software still relies on version
3.*. The use of HttpClient is often hidden inside Web-services mid-
dleware such as Axis 2 and XFire, which—several years after ver-
sion 4.* became available—still ship with HttpClient 3.* and thus
skip hostname verification for SSL certificates.

It is worth noting that the custom hostname verification code
added to HttpClient 4.* is incorrect and will reject valid certificates.
The following code is from HttpClient 4.2.1:

/ / The CN b e t t e r have a t l e a s t two d o t s i f i t wants

w i l d c a r d

/ / a c t i o n . I t a l s o can ’ t be [∗ . co . uk ] or [∗ . co . j p ] or

/ / [∗ . org . uk ] , e t c . . .

String parts[] = cn.split("\\.");

boolean doWildcard = parts.length >= 3 &&

parts[0].endsWith("*") &&

acceptableCountryWildcard(cn) &&

!isIPAddress(host);

if(doWildcard) {

if (parts[0].length() > 1) { / / e . g . s e r v e r∗

String prefix = parts[0].substring(0, parts.length

-2); / / e . g . s e r v e r

String suffix = cn.substring(parts[0].length());

/ / s k i p w i l d c a r d p a r t from cn

String hostSuffix = hostName.substring(prefix.length

()); / / s k i p w i l d c a r d p a r t from h o s t

match = hostName.startsWith(prefix) && hostSuffix.

endsWith(suffix);

} else {

match = hostName.endsWith(cn.substring(1));

}

if(match && strictWithSubDomains) {

/ / I f we ’ r e i n s t r i c t mode , t h e n [∗ . f o o . com ] i s n o t

/ / a l l o w e d t o match [ a . b . f o o . com]

match = countDots(hostName) == countDots(cn);

}

} else {

match = hostName.equals(cn);

}

This code computes the length of the prefix by subtracting 2
from the number of parts (determined by the number of dots in the
name). This logic is incorrect: validity of the first part of a domain
name should have nothing to do with the total number of parts. For

example, it will reject mail.<a>.<b>.com if the name in the
certificate is m*.<a>.<b>.com.

Furthermore, the original patch, as well as its derivatives, has
a minor bug in the regular expression for parsing IPv4 addresses,
causing it to accept IP addresses starting with zero (this does not
immediately result in a security vulnerability):

private static final Pattern IPV4_PATTERN =

Pattern.compile("^(25[0-5]|2[0-4]\\d|[0-1]?\\d

?\\d)(\\.(25[0-5]|2[0-4]\\d|[0-1]?\\d?\\d))

{3}\$");

7.6 Trillian
Trillian, a popular instant messenger client, relies on OpenSSL

for SSL connection establishment. By default, OpenSSL does not
throw a run-time exception if the certificate is self-signed or has an
invalid chain of trust. Instead, it sets flags. Furthermore, OpenSSL
does not provide any hostname verification.

If the application has called SSL_CTX_set to set the SSL_VERIFY

_PEER flag (see Section 4.1), then SSL_connect exits and prints an
error message when certificate validation fails. Trillian does not set
the SSL_VERIFY_PEER flag. When this flag is not set, SSL_connect
returns 1. The application is then expected to check the status of
certificate validation by calling SSL_get_verify_result. Trillian
does not call this function.

Trillian thus accepts any SSL certificate and is insecure against a
man-in-the-middle attack. Depending on the specific module cho-
sen by the Trillian user, this reveals usernames, passwords, secu-
rity tokens, etc. for Google Talk (typically compromising all of the
user’s Google services), AIM, ICQ, Windows Live (including Sky-
Drive), and Yahoo! Messenger (and thus all Yahoo! services).

Interestingly, it was reported back in 2009 that older versions of
Trillian do not correctly validate MSN certificates [20]. This bug
was ostensibly fixed in Trillian 4.2. Our analysis shows, however,
that SSL certificate validation is still completely broken for all ser-
vices, not just for MSN (Windows Live), in Trillian 5.1.0.19.

7.7 Rackspace
The Rackspace app for iOS (version 2.1.5) is an open-source

application for administering Rackspace cloud services. It uses the
OpenStack iOS cloud client framework, which in turn relies on the
ASIHTTPRequest library to set up HTTPS connections.

ASIHTTPRequest provides a configuration variable Validates

SecureCertificate, set to 1 by default. If reset to 0, it turns
off both chain-of-trust and hostname verification. OpenStack sup-
ports multiple accounts on remote servers and lets users customize
SSL certificate validation on per-account basis using the ignoreSSL

Validation variable. The value of this variable depends on the GUI
switch validateSSLSwitch, which should be shown to the user.

The Rackspace app (version 2.1.5) does not present the user with
this option.9 The GUI switch validateSSLSwitch is thus never dis-
played or explicitly assigned. Instead, it is simply initialized to 0 by
the Objective-C allocator. This turns on ignoreSSLValidation in
ASIHTTPRequest, which in turn sets ValidatesSecureCertificate
to 0 and disables certificate validation.

As a consequence, SSL connections established by the Rackspace
app on iOS are insecure against a man-in-the-middle attack.

7.8 TextSecure
TextSecure is an Android application for encrypting SMS and

MMS messages. It was written by Moxie Marlinspike who had

9We are informed by Mike Mayo that this was an accidental over-
sight and will be fixed in subsequent releases of the app.



previously discovered several SSL certificate validation vulnerabil-
ities [11, 12]. This following code can be found in the application
(however, it does not appear to be reachable from the user interface
and may not currently lead to an exploitable vulnerability):

schemeRegistry.register(new Scheme("http",

PlainSocketFactory.getSocketFactory(), 80));

schemeRegistry.register(new Scheme("https",

SSLSocketFactory.getSocketFactory(), 443));

...

HttpHost target = new HttpHost(hostUrl.getHost(),

hostUrl.getPort(), HttpHost.DEFAULT_SCHEME_NAME);

...

HttpResponse response = client.execute(target, request);

Even if the port number is 443, DEFAULT_SCHEME_NAME is “http”
and the connection is over HTTP, not HTTPS.

8. USING INSECURE MIDDLEWARE
As explained in Section 5, software based on Web services usu-

ally relies on middleware libraries to manage network connections.
SSL functionality inside these libraries is opaque to the applica-
tions. If the middleware employs a broken HTTPS implementation
that does not correctly validate SSL certificates, all applications
based on it typically “inherit” the vulnerability.

8.1 Apache Axis, Axis 2, Codehaus XFire
Apache Axis is an open-source Java implementation of SOAP.

The latest release is 1.4, discontinued in 2007 in favor of Axis 2,
but the library is still used, for example, in PayPal’s Java SDKs.
Apache Axis 2 is a complete redesign of Apache Axis. The lat-
est release is 1.6.2. Codehaus XFire is another open-source Java
implementation of SOAP. It was discontinued in 2007 in favor of
Apache CXF, but is still used, for example, in Amazon’s EC2 Java
SDK. The latest release of XFire is 1.2.6.

Apache Axis uses its own version of HttpClient, while Axis 2
and XFire use Apache HttpClient version 3.1. Both versions of
HttpClient rely on SSLSocketFactory for SSL connection estab-
lishment but mistakenly omit hostname verification (Section 4.2).

SSL vulnerabilities caused by bugs in Web-services middleware
are pervasive in Amazon libraries. Affected software includes Ama-

zon EC2 API Tools Java library, which uses XFire to set up SSL
connections to EC2 servers, and Amazon Flexible Payments Ser-

vice (Java) merchant SDK, which relies on an old Apache Http-
Client. The latter library is used by merchants to transmit cus-
tomers’ payment details to the FPS gateway. The PHP version of
the library is broken, too, but in a very different way (Section 7.1).
In contrast to the PHP version, however, the Java utility for verify-
ing instant payment notifications uses JSSE’s HttpsClient instead
of Apache HttpClient and thus checks SSL certificates correctly.

Other software that relies on Axis includes Java SOAP SDKs
for PayPal Payments Pro (Direct Payment), PayPal Transac-

tional Information, and PayPal Mass Pay, as well as Apache

ActiveMQ implementation of JMS (Java Message Service).

8.2 Pusher
Pusher is a WebSocket-based API that provides real-time mes-

saging functionality to mobile and Web applications. Pusher’s An-
droid libraries10 are based on Weberknecht (see Section 4.2). Any
application using these libraries (e.g., GitHub’s Gaug.es) is thus
insecure. It is also worth noting that Gaug.es is using an updated
version of Weberknecht, which, in addition to incorrectly using raw
SSLSocketFactory (see Section 4.1), disables the trust manager.

10
https://github.com/EmoryM/Android_Pusher

In summary, any software using any of the above Web-services

frameworks is insecure against a man-in-the-middle attack.

Apache CXF. Apache CXF is a continuation of XFire. It supports
SOAP, along with REST and CORBA; the latest release is 2.6.1.
It does not rely on Apache HttpClient. Instead, SSL connections
are established using OpenJDK’s HttpsClient. Therefore, prop-
erly configured instances of CXF do verify hostnames.

Apache CXF provides an application-controlled option to turn
off certificate validation. Certificate validation is enabled by de-
fault, but was disabled in the sample wsdl_first_https code sup-
plied with CXF until we notified the developers.

9. USING INSECURE SSL LIBRARIES
As described in Section 4.2, PHP’s fsockopen does not validate

SSL certificates. Nevertheless, it is often used even by applications
that must be secure against a man-in-the-middle attack. For exam-
ple, PayPal’s IPN utility contains this code:

/ / p o s t back t o PayPal u t i l i t y t o v a l i d a t e

...

$fp = fsockopen (’ssl://www.paypal.com’, 443, $errno,

$errstr, 30);

This code is replicated in PayPal payment modules for ZenCart

and PrestaShop shopping carts. PrestaShop uses fsockopen in its
CanadaPost payment module, too. Other similarly vulnerable soft-
ware includes Open Source Classifieds,

Python’s URL libraries do not validate certificates (Section 4.2),
yet developers still use them for SSL connections. Examples in-
clude Tweepy, a library for accessing Twitter API that uses httplib,
and Mozilla’s Zamboni project, which accepts contributions for
extension developers and uses urllib2 to connect to PayPal.

10. BREAKING OR DISABLING

CERTIFICATE VALIDATION
In general, disabling proper certificate validation appears to be

the developers’ preferred solution to any problem with SSL libraries.
Here are a few typical quotes from developers’ forums:

• “I want my client to accept any certificate (because I’m only
ever pointing to one server) but I keep getting a javax.net.

ssl.SSLException: Not trusted server certificate ex-

ception”11—[note the fallacious reasoning!]

• “Tutorial: Disabling Certificate Validation in an HTTPS Con-
nection. . . Reply: Thank you very much. You solved my
biggest problem in the project.” 12

• “I have always turned off CURLOPT_SSL_VERIFYPEER
in curl.”13

• “I am using axis on java to consume a webservice. The web
service is in https, and I want to avoid the the check for cer-
tificate.”14

11
http://stackoverflow.com/questions/2642777/
trusting-all-certificates-using-httpclient-
over-https

12
http://www.exampledepot.com/egs/javax.net.
ssl/trustall.html

13
http://stackoverflow.com/questions/
10102225/curl-ssl-certificates

14
http://stackoverflow.com/questions/9079298/
axis-fake-certificate



• “However, by default, SSL support in NSStream is a little
paranoid. It won’t, for example, use a self-signed certifi-
cate or an expired certificate to establish a secure connec-
tion. NSStream does a number of validity checks when es-
tablishing the secure connection, and if they don’t all pass,
the streams appear to be valid, but no data gets sent or re-
ceived. This is somewhat frustrating, and it could be there’s
a way to find out when the secure connection failed, but I
haven’t been able to find it in the documentation, or using
Google. There is an error domain declared for these errors
(NSStreamSocketSSLErrorDomain), but in my experimenta-
tion, no errors gets generated, the streams even accept bytes
for transfer, but nothing happens.” 15

Unfortunately, these bad development practices find their way
even into critical software responsible for transmitting financial in-
formation and sensitive data, where security against man-in-the-
middle attacks is absolutely essential and SSL certificate valida-
tion should be mandatory. For example, a comment in the Autho-
rize.Net eCheck module of ZenCart says that certificate validation
is disabled for “compatibility for SSL communications on some
Windows servers (IIS 5.0+)”—note the fallacious reasoning!

10.1 Chase mobile banking
Chase is a major US bank. SSL connections established by its

mobile banking application on Android are insecure against a man-
in-the-middle attack. This allows a network attacker to capture cre-
dentials, such as username and password, of any Chase customer
using this app, along with the rest of their session.

Decompilation and analysis of this app’s code show that it over-
rides the default X509TrustManager. The replacement code simply
returns without checking the server’s certificate. The code below
is the result of reverse-engineering, thus variable names and other
details may differ from the actual code:

public final void checkServerTrusted(X509Certificate[]

paramArrayOfX509Certificate, String paramString)

{

if ((paramArrayOfX509Certificate != null) && (

paramArrayOfX509Certificate.length == 1))

paramArrayOfX509Certificate[0].checkValidity();

while (true)

{

return;

this.a.checkServerTrusted(

paramArrayOfX509Certificate, paramString);

}

}

Note the unreachable invocation of checkServerTrusted. We
conjecture that this was a temporary plug during development that
somehow found its way into the production version of the app.

10.2 Apache Libcloud
Apache Libcloud16 is a Python library extension providing sup-

port for 26 different cloud service providers. Libcloud relies on
the underlying Python library to verify the chain of trust in SSL
certificates; internally, Python uses OpenSSL. Once the chain of
trust is verified, Libcloud verifies the hostname using the _verify

_hostname method in httplib_ssl.py. This code uses an in-
correct regular expression for hostname verification. For example,
it accepts oogle.com as a match for google.com, exposing all
Libcloud clients to a man-in-the-middle attack:

15
http://iphonedevelopment.blogspot.com/2010/
05/nsstream-tcp-and-ssl.html

16
http://libcloud.apache.org/

def _verify_hostname(self, hostname, cert):

# V e r i f y hos tname a g a i n s t peer c e r t

# Check bo th commonName and e n t r i e s i n s u b j e c t A l t N am e ,

# u s i n g a r u d i m e n t a r y g lob t o dns r e g e x check

# t o f i n d matches

common_name = self._get_common_name(cert)

alt_names = self._get_subject_alt_names(cert)

# r e p l a c e ∗ w i t h a lphanumer ic and dash

# r e p l a c e . w i t h l i t e r a l .

valid_patterns = [re.compile(pattern.replace(r".", r"

\.").replace(r"*", r"[0-9A-Za-z]+"))

for pattern

in (set(common_name) | set(alt_names))

]

return any(

pattern.search(hostname)

for pattern in valid_patterns

)

This bug has been fixed in Libcloud version 0.11.1 after we no-
tified the developers.

10.3 Amazon Elastic Load Balancing API Tools
This library overrides JDK’s default X509TrustManager to dis-

able hostname verification. Even if X509TrustManager had not been
overriden, this library employs Codehaus XFire which does not
perform hostname verification (see Section 8.1).

10.4 Shopping carts
osCommerce, ZenCart, Ubercart, and PrestaShop are open-

source shopping carts implemented in PHP. They use cURL for
SSL connections to payment gateways. If cURL is not available,
they typically fall back on (insecure) fsockopen.

All carts are bundled with plugin modules for specific payment
processors. Almost without exception, these modules turn off cer-
tificate validation. In ZenCart, vulnerable modules include Link-
Point, Authorize.Net, and PayPal Payments Pro, as well as PayPal
IPN functionality (see Section 7.3). The insecure LinkPoint mod-
ule contains an amusing comment at the beginning of the file: “###
YOU REALLY DO NOT NEED TO EDIT THIS FILE! ###”

Vulnerable modules include eBay, PayPal, and Canada Post in
PrestaShop, PayPal, Authorize.Net, and CyberSource in Ubercart,
Sage Pay Direct, Authorize.Net, MoneyBookers, and PayPal Ex-
press, Pro, Pro PayFlow, and Pro PayFlow EC in osCommerce.

SSL connections to payment gateways from merchants using any
of these carts are insecure against a man-in-the-middle attack.

The only exceptions are Google modules for PrestaShop and os-
Commerce. The Google Checkout module for osCommerce comes
from code.google.com and is not bundled with osCommerce.
It sets CURLOPT_SSL_VERIFYPEER to true and leaves CURLOPT_SSL_

VERIFYHOST to its correct default value, 2. By contrast, the official,
PayPal-provided PayFlow module disables certificate validation.

10.5 AdMob
Google’s AdMob provides sample code to mobile site owners

that they can use on their servers to associate instances of their
mobile apps with their developer accounts (see Section 5). This
code uses cURL to establish an SSL connection to AdMob’s server,
but turns off certificate validation. A man-in-the-middle attacker
can thus gain access to all of the developers’ Google services.

10.6 Android apps
Groupon Redemptions, an Android app for merchants, disables

certificate validation twice: by allowing any hostname via the “al-
low all” hostname verifier and by binding to an empty trust man-



ager. Similarly, Breezy, an app for secure document printing, dis-
ables hostname verification and overrides the default trust manager.

ACRA, an Android library for posting application crash reports
to a Google Doc, overrides the default trust manager. Any app
using this library is insecure against a man-in-the-middle attack.

10.7 AIM
AIM client version 1.0.1.2 on Windows uses Microsoft’s Cryp-

toAPI. Runtime analysis shows that it calls CryptoAPI’s certifi-
cate validation function CertVerifyCertificateChainPolicy. To
disable certificate validation, it passes a CERT_CHAIN_POLICY_PARA

variable with CERT_CHAIN_POLICY_ALLOW_UNKNOWN_CA_FLAG set, in-
structing CryptoAPI to accept certificates signed by untrusted au-
thorities. AIM does not perform any hostname verification, either.

10.8 FilesAnywhere
FilesAnywhere is an application for managing cloud storage. It

uses CryptoAPI for SSL connections and accepts both self-signed
and third-party certificates.

FilesAnywhere has an interesting peculiarity. If presented with
a Google certificate when it attempts to connect to a non-Google
server, it shows a warning message “The WebDav server has a new
address. Please specify http://google.com in the profile.” If pre-
sented with any other third-party certificate, it silently accepts it
and sends user’s data to a wrong, potentially malicious server.

11. OUR RECOMMENDATIONS
Whenever application developers must deal with SSL, the con-

ventional advice is to use standard SSL libraries. This advice is
correct, but insufficient. As this paper shows, even developers of
high-security software often use standard SSL libraries incorrectly.
The following recommendations are informed by our analyses of
broken SSL certificate validation in diverse applications.

11.1 For application developers
DO use fuzzing (black-box, if necessary) and adversarial test-

ing to see how the application behaves when presented with abnor-
mal SSL certificates. Even when the vulnerabilities are subtle, the
symptoms usually are not. In many of our case studies, it is obvious
that the software in question has never been tested with any certifi-
cates other than those of the intended server. When presented with
a certificate issued to AllYourSSLAreBelongTo.us instead
of the expected Amazon or PayPal or Chase certificate, these pro-
grams eagerly establish SSL connections and spill out their secrets.
These vulnerabilities should have manifested during testing.

DON’T modify application code and disable certificate valida-
tion for testing with self-signed and/or untrusted certificates. We
found in our case studies that developers forget to reverse these
modifications even for the production version of the software. In-
stead, create a temporary keystore with the untrusted CA’s public
key in it. While testing your code with self-signed or untrusted
certificates, use that keystore as your trusted keystore.

DON’T depend on the library’s defaults to set up the SSL con-
nection securely. Default settings can and do change between dif-
ferent libraries or even different versions of the same library—for
example, cURL prior to version 7.10 did not validate certificates
by default, but version 7.10 and later do. Always explicitly set the
options necessary for secure connection establishment.

11.2 For SSL library developers
DO make SSL libraries more explicit about the semantics of their

APIs. In many cases, it is obvious that application developers do
not understand the meaning of various options and parameters. For

example, the PHP libraries for Amazon Flexible Payments Services
and PayPal Payments Standard attempt to enable hostname verifi-
cation in cURL, but instead accidentally override the correct default
value and end up disabling it (Sections 7.1 and 7.2). This shows
that even safe defaults may be insufficient. Lynx attempts to check
for self-signed certificates, but misinterprets the meaning of return
values of GnuTLS’s certificate validation function and the check is
never executed (Section 7.4). Formalizing the precise semantics of
SSL library API and rigorously verifying the “contracts” between
the application and the library is an interesting topic for future re-
search and may call for programming language support.

DON’T delegate the responsibility for managing SSL connec-
tions to the applications. Existing SSL libraries expose many op-
tions to higher-level software. This is fraught with peril. Appli-
cation developers may not realize that they must explicitly choose
certain options in order to enable certificate validation. Therefore,
libraries should use safe defaults as much as possible. Furthermore,
they should not silently skip important functionality such as host-
name verification as JSSE does when the algorithm field is NULL
or an empty string (see Section 4.1). Instead, they should raise a
runtime exception or inform the application in some other way.

DO design a clean and consistent error reporting interface. Li-
braries such as OpenSSL and GnuTLS report some errors via re-
turn values of functions, while other errors from the same function
are reported through a flag passed as an argument. Inconsistent in-
terfaces confuse developers who then mistakenly omit some error
checks in their applications.

These recommendations provide short-term fixes. A principled
solution to the problem must involve a complete redesign of the
SSL libraries’ API. Instead of asking application developers to man-
age incomprehensible options such as CURLOPT_SSL_VERIFYPEER or
SSL_get_verify_result, they should present high-level abstrac-
tions that explicitly express security properties of network connec-
tions in terms that are close to application semantics: for exam-
ple, a “confidential and authenticated tunnel.” The library should
also be explicit about the security consequences of any application-
controlled option: for example, instead of “verify hostname?”, it
could ask “Anyone can impersonate the server. Ok or not?”

12. RELATED WORK
Independently of this work, Kevin McArthur announced multi-

ple vulnerabilities caused by improper SSL certificate validation in
PHP software. 17 Affected programs include, among others, os-
Commerce, Ubercart, PrestaShop, and three PayPal SDKs.

Moxie Marlinspike demonstrated several vulnerabilities in cer-
tificate validation code in browsers and SSL libraries, including the
lack of basic constraint checking (e.g., checking the CA bit) [11]
and incorrect parsing of NULL characters in the “CommonName”
field [12]. By contrast, we focus on non-browser software that uses
(mostly) correct SSL libraries incorrectly.

Kaminsky et al. [10] showed that parsing differences between
CA software and browser certificate validation code can result in a
CA issuing a certificate that can be used for a man-in-the-middle
attack. By contrast, we investigate certificate validation bugs in
non-browser clients, not in CA software.

Stevens et al. showed how an attacker can leverage MD5 hash
collisions to get a CA to issue a specially crafted certificate that is
valid for an ordinary host but whose hash collides with that of a
certificate for a new, rogue intermediate CA [18]. By contrast, our
attacks do not involve certificate forgery.

17
http://www.unrest.ca/peerjacking



Several certificate authorities such as Comodo [5] and DigiNo-
tar [6] were recently compromised and used by attackers to issue
fake certificates for popular websites. By contrast, our attacks do
not involve CA compromise.

To mitigate the risks of rogue certificates, Evans et al. proposed
certificate pinning, i.e., pre-established bindings in the browser be-
tween well-known websites and their certificates [8]. Certificate
pinning is not supported by any of the software we analyzed.

Several large-scale studies analyzed HTTPS deployment [7, 22]
and found many errors in SSL certificates. One of the most com-
mon errors is a mismatch between the server’s fully qualified do-
main name and certificate’s identifiers. This misconfiguration alone
does not enable a man-in-the-middle attack.

Chen et al. showed how a malicious proxy can exploit browser
bugs for man-in-the-middle attacks on HTTPS [3]. By contrast, our
attacks do not depend on browser bugs.

Side-channel attacks can extract information from encrypted traf-
fic even when SSL is correctly deployed [4, 19]. By contrast, we
found vulnerabilities that enable a man-in-the-middle attacker to
decrypt SSL traffic, obviating the need for side-channel analysis.
Other side-channel attacks include a timing attack that extracts the
private key from OpenSSL implementations [2].

13. CONCLUSION
The main lesson of this paper is that using SSL in non-browser

software is a surprisingly challenging task. We demonstrated that
even applications that rely on standard SSL libraries such as JSSE,
OpenSSL, GnuTLS, etc. often perform SSL certificate validation
incorrectly or not at all. These vulnerabilities are pervasive in crit-
ical software, such as Amazon FPS and PayPal libraries for trans-
mitting customers’ payment details from merchants to payment
gateways; integrated shopping carts; Amazon EC2, Rackspace, and
other clients for remote administration of cloud storage and virtual
cloud infrastructure; Chase mobile banking on Android; and many
other popular programs. Their SSL connections are completely in-
secure against a man-in-the-middle attack.

We also presented our recommendations for safer use of SSL in
non-browser software. Future research directions include (1) de-
velopment of better black-box testing and code analysis tools for
discovering errors in SSL connection establishment logic, (2) de-
sign of formal verification techniques and programming language
support for automatically checking whether applications use SSL
libraries correctly and not misinterpret the meaning of critical op-
tions and parameters, and (3) design of better APIs for SSL and
other secure networking protocols.
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