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Abstract. By carefully measuring the amount of time required to per-

form private key operations, attackers may be able to �nd �xed Di�e-

Hellman exponents, factor RSA keys, and break other cryptosystems.

Against a vulnerable system, the attack is computationally inexpensive

and often requires only known ciphertext. Actual systems are potentially

at risk, including cryptographic tokens, network-based cryptosystems,

and other applications where attackers can make reasonably accurate

timing measurements. Techniques for preventing the attack for RSA and

Di�e-Hellman are presented. Some cryptosystems will need to be re-

vised to protect against the attack, and new protocols and algorithms

may need to incorporate measures to prevent timing attacks.
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1 Introduction

Cryptosystems often take slightly di�erent amounts of time to process di�erent

inputs. Reasons include performance optimizations to bypass unnecessary op-

erations, branching and conditional statements, RAM cache hits, processor in-

structions (such as multiplication and division) that run in non-�xed time, and

a wide variety of other causes. Performance characteristics typically depend on

both the encryption key and the input data (e.g., plaintext or ciphertext). While

it is known that timing channels can leak data or keys across a controlled perime-

ter, intuition might suggest that unintentional timing characteristics would only

reveal a small amount of information from a cryptosystem (such as the Ham-

ming weight of the key). However, attacks are presented which can exploit timing

measurements from vulnerable systems to �nd the entire secret key.

2 Cryptanalysis of a Simple Modular Exponentiator

Di�e-Hellman[2] and RSA[8] private-key operations consist of computing R =

yx mod n, where n is public and y can be found by an eavesdropper. The at-

tacker's goal is to �nd x, the secret key. For the attack, the victim must com-

pute yx mod n for several values of y, where y, n, and the computation time are

known to the attacker. (If a new secret exponent x is chosen for each operation,



the attack does not work.) The necessary information and timing measurements

might be obtained by passively eavesdropping on an interactive protocol, since

an attacker could record the messages received by the target and measure the

amount of time taken to respond to each y. The attack assumes that the attacker

knows the design of the target system, although in practice this could probably

be inferred from timing information.

The attack can be tailored to work with virtually any implementation that

does not run in �xed time, but is �rst outlined using the simple modular expo-

nentiation algorithm below which computes R = yx mod n, where x is w bits

long:

Let s0 = 1.

For k = 0 upto w � 1:

If (bit k of x) is 1 then

Let Rk = (sk � y) mod n.

Else

Let Rk = sk.

Let sk+1 = R2
k
mod n.

EndFor.

Return (Rw�1).

The attack allows someone who knows exponent bits 0::(b-1) to �nd bit b. To

obtain the entire exponent, start with b equal to 0 and repeat the attack until

the entire exponent is known.

Because the �rst b exponent bits are known, the attacker can compute the

�rst b iterations of the For loop to �nd the value of sb. The next iteration requires

the �rst unknown exponent bit. If this bit is set, Rb = (sb � y) mod n will be

computed. If it is zero, the operation will be skipped.

The attack will be described �rst in an extreme hypothetical case. Sup-

pose the target system uses a modular multiplication function that is nor-

mally extremely fast but occasionally takes much more time than an entire

normal modular exponentiation. For a few sb and y values the calculation of

Rb = (sb � y) mod n will be extremely slow, and by using knowledge about the

target system's design the attacker can determine which these are. If the total

modular exponentiation time is ever fast when Rb = (sb �y) mod n is slow, expo-

nent bit b must be zero. Conversely, if slow Rb = (sb �y) mod n operations always

result in slow total modular exponentiation times, the exponent bit is probably

set. Once exponent bit b is known, the attacker can verify that the overall oper-

ation time is slow whenever sb+1 = R2
b
mod n is expected to be slow. The same

set of timing measurements can then be reused to �nd the following exponent

bits.

3 Error Correction

If exponent bit b is guessed incorrectly, the values computed for Rk�b will be

incorrect and, so far as the attack is concerned, essentially random. The time
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required for multiplies following the error will not be reected in the overall

exponentiation time. The attack thus has an error-detection property; after an

incorrect exponent bit guess, no more meaningful correlations are observed.

The error detection property can be used for error correction. For example,

the attacker can maintain a list of the most likely exponent intermediates along

with a value corresponding to the probability each is correct. The attack is

continued for only the most likely candidate. If the currently-favored value is

incorrect, it will tend to fall in ranking, while correct values will tend to rise.

Error correction techniques increase the memory and processing requirements

for the attack, but can greatly reduce the number of samples required.

4 The General Attack

The attack can be treated as a signal detection problem. The \signal" consists

of the timing variation due to the target exponent bit, and \noise" results from

measurement inaccuracies and timing variations due to unknown exponent bits.

The properties of the signal and noise determine the number of timing measure-

ments required to for the attack.

Given j messages y0; y1; :::; yj�1 with corresponding timing measurements

T0; T1; :::; Tj�1, the probability that a guess xb for the �rst b exponent bits is

correct is proportional to

P (xb) /
j�1Y
i=0

F (Ti � t(yi; xb))

where t(yi; xb) is the amount of time required for the �rst b iterations of the

yx
i
mod n computation using exponent bits xb, and F is the expected probability

distribution function of T � t(y; xb) over all y values and correct xb. Because F

is de�ned as the probability distribution of Ti� t(yi; xb) if xb is correct, it is the

best function for predicting Ti � t(yi; xb). Note that the timing measurements

and intermediate s values can be used improve the estimate of F .

Given a correct guess for xb�1, there are two possible values for xb. The

probability that xb is correct and x0
b
is incorrect can be found asQ

j�1

i=0 F (Ti � t(yi; xb))Q
j�1
i=0 F (Ti � t(yi; xb)) +

Q
j�1
i=0 F (Ti � t(yi; x

0

b
))
:

In practice, this formula is not very useful because �nding F would require

extraordinary e�ort.

5 Simplifying the Attack

Fortunately it is generally not necessary to compute F . Each timing observation

consists of T = e+
P

w�1

i=0 ti, where ti is the time required for the multiplication

and squaring steps for bit i and e includes measurement error, loop overhead,
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etc. Given guess xb, the attacker can �nd
P

b�1
i=0 ti for each sample y. If xb is

correct, subtracting from T yields e+
P

w�1

i=0 ti �
P

b�1

i=0 ti = e+
P

w�1

i=b ti. Since

the modular multiplication times are e�ectively independent from each other

and from the measurement error, the variance of e+
P

w�1

i=b ti over all observed

samples is expected to be Var(e) + (w� b)Var(t). However if only the �rst c < b

bits of the exponent guess are correct, the expected variance will be Var(e) +

(w� b+2c)Var(t). Correctly-emulated iterations decrease the expected variance

by Var(t), while iterations following an incorrect exponent bit each increase the

variance by Var(t). Computing the variances is easy and provides a good way to

identify correct exponent bit guesses.

It is now possible to estimate the number of samples required for the attack.

Suppose an attacker has j accurate timing measurements and has two guesses

for the �rst b bits of a w-bit exponent, one correct and the other incorrect with

the �rst error at bit c. For each guess the timing measurements can be adjusted

by
P

b�1

i=0 ti. The correct guess will be identi�ed successfully if its adjusted values

have the smaller variance.

It is possible to approximate ti using independent standard normal variables.

If Var(e) is negligible, the expected probability of a correct guess is

P

 
j�1X
i=0

�p
w � bXi +

p
2(b� c)Yi

�2
>

j�1X
i=0

�p
w � bXi

�2!

= P

 
2
p
2(b� c)(w � b)

j�1X
i=0

XiYi + 2(b� c)

j�1X
i=0

Y 2
i
> 0

!

where X and Y are normal random variables with � = 0 and � = 1. Because j

is relatively large,
P

j�1
i=0 Y

2
i
� j and

P
j�1
i=0 XiYi is approximately normal with

� = 0 and � =
p
j, yielding

P
�
2
p
2(b� c)(w � b)(

p
jZ) + 2(b� c)j > 0

�
= P

 
Z > �

p
j(b� c)p
2(w � b)

!

where Z is a standard normal random variable. Finally, integrating to �nd the

probability of a correct guess yields �
�q

j(b�c)

2(w�b)

�
, where �(x) is the area under

the standard normal curve from �1 to x. The required number of samples (j) is

thus proportional to the exponent size (w). The number of measurements might

be reduced if attackers choose inputs known to have extreme timing character-

istics at exponent locations of interest.

6 Experimental Results

Figure 1 shows the distribution of 106 modular multiplication times observed

using the RSAREF toolkit[10] on a 120-MHz PentiumTM computer running

MSDOSTM . The distribution was prepared by timing one million (a � b mod n)

calculations using a and b values from actual modular exponentiation operations
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with random inputs. The 512-bit sample prime #1 from the RSAREF Di�e-

Hellman demonstration program was used for n. A few wildly aberrant samples

(which took over 1300�s) were discarded. The Figure 1 distribution has mean �

= 1167.8�s and standard deviation � = 12:01�s. The measurement error is small;

the tests were run twice and the average measurement di�erence was found to

be under 1�s. RSAREF uses the same function for squaring and multiplication,

so squaring and multiplication times have identical distributions.

RSAREF precomputes y2 and y3 mod n and processes two exponent bits

at a time. In total, a 512-bit modular exponentiation with a random 256-bit

exponent requires 128 iterations of the modular exponentiation loop and a total

of about 352 modular multiplication and squaring operations. Each iteration

of the modular exponentiation loop does two squaring operations and, if either

exponent bit is nonzero, one multiply. The attack can be adjusted to append

pairs of exponent bits and to evaluate four candidate values at each exponent

position instead of two.

Since modular multiplications consume most of the total modular exponen-

tiation time, it is expected that the distribution of modular exponentiation

times will be approximately normal with � � (1167:8)(352) = 411; 065:6�s and

� � 12:01
p
352 = 225:3�s. Figure 2 shows measurements from 5000 actual mod-

ular exponentiation operations using the same computer and modulus, which

yielded � = 419; 901�s and � = 235�s.

With 250 timing measurements, the probability that subtracting the time for

a correct modexp loop iteration from each sample will reduce the total variance

more than subtracting an incorrect iteration is estimated to be �
�q

j(b�c)

2(w�b)

�
,

where j = 250, b = 1, c = 0, and w = 127. (There are 128 iterations of the

RSAREF modexp loop for a 256-bit exponent, but the �rst iteration is ignored.)

Correct guesses are thus expected with probability �
�q

250(1�0)

2(126)

�
� 0:84. The

5



5000 samples from Figure 2 were divided into 20 groups of 250 samples each,

and variances from subtracting the time for incorrect and correct modexp loop

iterations were compared at each of the 127 exponent bit pairs. Of the 2450

trials, 2168 produced a larger variance after subtracting an incorrect modexp

loop time than after subtracting the time for a correct modexp loop, yielding a

probability of 0.885. The �rst exponent bits are most di�cult, since b becomes

larger as more exponent bits become known and the probabilities should improve.

(The test above did not take advantage of this property.) It is important to note

that accurate timing measurements were used; measurement errors which are

large relative to the total modular exponentiation time standard deviation will

increase the number of samples needed.

The attack is computationally quite easy. With RSAREF, the attacker has

to evaluate four choices per pair of bits. Thus the attacker only has to do four

times the number of operations done by the victim, not counting e�ort wasted

by incorrect guesses.

7 Montgomery Multiplication and the CRT

Modular reduction steps usually cause most of the timing variation in a modu-

lar multiplication operation. Montgomery multiplication[6] eliminates the mod n

reduction steps and, as a result, tends to reduce the size of the timing character-

istics. However, some variation usually remains. If the remaining \signal" is not

dwarfed by measurement errors, the variance in tb and the variance of
P

w�1

i=b+1 ti
would be reduced proportionally and the attack would still work. However if the

measurement error e is large, the required number of samples will increase in

proportion to 1

Var(ti)
.

The Chinese Remainder Theorem (CRT) is also often used to optimize RSA

private key operations. With CRT, (y mod p) and (y mod q) are computed �rst,

where y is the message. These initial modular reduction steps can be vulnerable

to timing attacks. The simplest such attack is to choose values of y that are

close to p or q, then use timing measurements to determine whether the guessed

value is larger or smaller than the actual value of p (or q). If y is less than

p, computing y mod p has no e�ect, while if y is larger than p, it is necessary

to subtract p from y at least once. Also, if the message is very slightly larger

than p, y mod p will have leading zero digits, which may reduce the amount of

time required for the �rst multiplication step. The speci�c timing characteristics

depend on the implementation. RSAREF's modular reduction function with a

512-bit modulus the Pentium computer with y chosen randomly between 0 and

2p takes an average of 42.1�s if y < p, as opposed to 73.9�s if y > p. Timing

measurements from many y could be combined to successively approximate p.

In some cases it may be possible to improve the Chinese Remainder Theorem

RSA attack to use known (not chosen) ciphertexts, reducing the number of mes-

sages required and making it possible to attack RSA digital signatures. Modular

reduction is done by subtracting multiples of the modulus, and exploitable timing

variations can be caused by variations in the number of compare-and-subtract
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steps. For example, RSAREF's division loop integer-divides the uppermost two

digits of y by one more than the upper digit of p, multiplies p by the quotient,

shifts left the appropriate number of digits, then subtracts the result from y. If

the result is larger than p (shifted left), a extra subtraction is performed. The

decision whether to perform an extra subtraction step in the �rst loop of the

division algorithm usually depends only on y (which is known) and the upper

two digits of p. A timing attack could be used to determine the upper digits

of p. For example, an exhaustive search over all possible values for the upper

two digits of p (or more e�cient techniques) could identify value for which the

observed times correlate most closely with the expected number of subtraction

operations. As with the Di�e-Hellman/non-CRT attack, once one digit of p has

been found, the timing measurements could be reused to �nd subsequent digits.

It is not yet known whether timing attacks can be adapted to directly attack

the mod p and mod q modular exponentiations performed with the Chinese

Remainder Theorem.

8 Timing Cryptanalysis of DSS

The Digital Signature Standard[5] computes s = (k�1(H(m) + x � r)) mod q,

where r and q are known to attackers, k�1 is usually precomputed, H(m) is the

hash of the message, and x is the private key. In practice, (H(m) + x � r) mod q

would normally be computed �rst, then is multiplied by k�1 (mod q).

If the modular reduction function runs in non-�xed time, the overall signa-

ture time should be correlated with the time for the (x � r mod q) computation.

The attacker can calculate and compensate for the time required to compute

H(m). Since H(m) is of approximately the same size as q, its addition has little

e�ect on the reduction time. The most signi�cant bits of x � r are typically the

�rst used in the modular reduction. These depend on r, which is known, and

the most signi�cant bits of the secret value x. There would thus be a correla-

tion between values of the upper bits of x and the total time for the modular

reduction. By looking for the strongest probabilities over the samples, the at-

tacker would try to identify the upper bits of x. As more upper bits of x become

known, more of x � r becomes known, allowing the attacker to proceed through

more iterations of the modular reduction loop to attack new bits of x. If k�1 is

precomputated, DSS signatures require just two modular multiplication opera-

tions, potentially making the amount of additional timing noise which must be

�ltered out relatively small.

9 Masking Timing Characteristics

The most obvious way to prevent timing attacks is to make all operations take

exactly the same amount of time. Unfortunately this is often di�cult. Making

software run in �xed time, especially in a platform-independent manner, is hard

because compiler optimizations, RAM cache hits, instruction timings, and other
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factors can introduce unexpected timing variations. If a timer is used to delay

returning results until a pre-speci�ed time, factors such as the system respon-

siveness or power consumption may still change detectably when the operation

�nishes. Some operating systems also reveal processes' CPU usage. Fixed time

implementations are also likely to be slow; many performance optimizations

cannot be used since all operations must take as long as the slowest operation.

(Note: Always performing the optional Ri = (si � y) mod n step does not make

an implementation run in constant time, since timing characteristics from the

squaring operation and subsequent loop iterations can be exploited.)

Another approach is to make timing measurements so inaccurate that the

attack becomes unfeasible. Random delays added to the processing time do in-

crease the number of ciphertexts required, but attackers can compensate by col-

lecting more measurements. The number of samples required increases roughly

as the square of the timing noise. For example, if a modular exponentiator whose

timing characteristics have a standard deviation of 10 ms can be broken success-

fully with 1000 timing measurements, adding a random normally distributed

delay with 1 second standard deviation will make the attack require approxi-

mately
�
1000ms

10ms

�2
(1000) = 107 samples. (Note: The mean delay would have to

be several seconds to get a standard deviation of 1 second.) While 107 samples

is probably more than most attackers can gather, a security factor of 107 is not

usually considered adequate.

10 Preventing the Attack

Fortunately there is a better solution. Techniques used for blinding signatures[1]

can be adapted to prevent attackers from knowing the input to the modular ex-

ponentiation function. Before computing the modular exponentiation operation,

choose a random pair (vi; vf ) such that v�1
f

= vi
x mod n. For Di�e-Hellman,

it is simplest to choose a random vi then compute vf = (v�1
i

)x mod n. For

RSA it is faster to choose a random vf relatively prime to n then compute

vi = (v�1
f

)e mod n, where e is the public exponent. Before the modular expo-

nentiation operation, the input message should be multiplied by vi (mod n), and

afterward the result is corrected by multiplying with vf (mod n). The system

should reject messages equal to 0 (mod n).

Computing inverses mod n is slow, so it is often not practical to generate a

new random (vi; vf ) pair for each new exponentiation. The vf = (v�1
i

)x mod n

calculation itself might even be subject to timing attacks. However (vi; vf ) pairs

should not be reused, since they themselves might be compromised by timing

attacks, leaving the secret exponent vulnerable. An e�cient solution to this

problem is update vi and vf before each modular exponentiation step by com-

puting v0
i
= v2

i
and v0

f
= v2

f
. The total performance cost is small (2 modular

squarings, which can be precomputed, plus 2 modular multiplications). More

sophisticated update operations using exponents other than 2, multiplication

with other (vi; vf ) pairs, etc. can also be used, but do not appear to o�er any

advantages.
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If (vi; vf ) is secret, attackers have no useful knowledge about the input to

the modular exponentiator. Consequently the most an attacker can learn is the

general timing distribution for exponentiation operations. In practice, distribu-

tions are close to normal and the 2w exponents cannot possibly be distinguished.

However, a maliciously-designed modular exponentiator could theoretically have

a distribution with sharp spikes corresponding to exponent bits, so blinding does

not provably prevent timing attacks.

Even with blinding, the distribution will reveal the average time per op-

eration, which can be used to infer the Hamming weight of the exponent. If

anonymity is important or if further masking is required, a random multiple of

'(n) can be added to the exponent before each modular exponentiation. If this is

done, care must be taken to ensure that the addition process itself does not have

timing characteristics which reveal '(n). This technique may be helpful in pre-

venting attacks that gain information leaked during the modular exponentiation

operation due to electromagnetic radiation, system performance uctuations,

changes in power consumption, etc. since the exponent bits change with each

operation.

11 Further Work

Timing attacks can potentially be used against other cryptosystems, includ-

ing symmetric functions. For example, in software the 28-bit C and D values

in the DES[4] key schedule are often rotated using a conditional which tests

whether a one-bit must be wrapped around. The additional time required to

move nonzero bits could slightly degrade the cipher's throughput or key setup

time. The cipher's performance can thus reveal the Hamming weight of the key,

which provides an average of
P56

n=0

�
56

n

�
256

log2

�
256�
56

n

�� � 3:95 bits of key infor-

mation. IDEA[3] uses an f() function with a modulo (216 + 1) multiplication

operation, which will usually run in non-constant time. RC5[7] is at risk on

platforms where rotates run in non-constant time. RAM cache hits can produce

timing characteristics in implementations of Blow�sh[11], SEAL[9], DES, and

other ciphers if tables in memory are not used identically in every encryption.

Additional research is needed to determine whether speci�c implementations

are at risk and, if so, the degree of their vulnerability. So far, only a few speci�c

systems have been studied in detail and the attacks against CRT/Montgomery

RSA and DSS are currently theoretical.

Further re�nements to the attack may also be possible. A direct attack

against p and q in RSA with the Chinese Remainder Theorem would be partic-

ularly important.

12 Conclusions

In general, any channel which can carry information from a secure area to the

outside should be studied as a potential risk. Implementation-speci�c timing
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characteristics provide one such channel and can sometimes be used to com-

promise secret keys. Vulnerable algorithms, protocols, and systems need to be

revised to incorporate measures to resist timing cryptanalysis and related at-

tacks.
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