
This paper is included in the Proceedings of the
26th USENIX Security Symposium
August 16–18, 2017 • Vancouver, BC, Canada

ISBN 978-1-931971-40-9

Open access to the Proceedings of the
26th USENIX Security Symposium

is sponsored by USENIX

Prime+Abort: A Timer-Free High-Precision
L3 Cache Attack using Intel TSX

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen,
University of California, San Diego

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen

PRIME+ABORT: A Timer-Free High-Precision L3 Cache Attack
using Intel TSX

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen
University of California, San Diego

{cdisselk, dkohlbre}@cs.ucsd.edu, leporter@eng.ucsd.edu, tullsen@cs.ucsd.edu

Abstract

Last-Level Cache (LLC) attacks typically exploit tim-
ing side channels in hardware, and thus rely heavily
on timers for their operation. Many proposed defenses
against such side-channel attacks capitalize on this re-
liance. This paper presents PRIME+ABORT, a new cache
attack which bypasses these defenses by not depending
on timers for its function. Instead of a timing side chan-
nel, PRIME+ABORT leverages the Intel TSX hardware
widely available in both server- and consumer-grade pro-
cessors. This work shows that PRIME+ABORT is not
only invulnerable to important classes of defenses, it
also outperforms state-of-the-art LLC PRIME+PROBE
attacks in both accuracy and efficiency, having a max-
imum detection speed (in events per second) 3× higher
than LLC PRIME+PROBE on Intel’s Skylake architecture
while producing fewer false positives.

1 Introduction

State-of-the-art cache attacks [35, 7, 11, 21, 25, 29, 33,
34, 43] leverage differences in memory access times be-
tween levels of the cache and memory hierarchy to gain
insight into the activities of a victim process. These at-
tacks require the attacker to frequently perform a series
of timed memory operations (or cache management oper-
ations [7]) to learn if a victim process has accessed a crit-
ical address (e.g., a statement in an encryption library).

These attacks are highly dependent on precise and ac-
curate timing, and defenses can exploit this dependence.
In fact, a variety of defenses have been proposed which
undermine these timing-based attacks by restricting ac-
cess to highly precise timers [15, 27, 31, 39].

In this work, we introduce an alternate mechanism for
performing cache attacks, which does not leverage tim-
ing differences (timing side channels) or require timed
operations of any type. Instead, it exploits Intel’s im-
plementation of Hardware Transactional Memory, which

is called TSX [19]. We demonstrate a novel cache
attack based on this mechanism, which we will call
PRIME+ABORT.

The intent of Transactional Memory (and TSX) is to
both provide a simplified interface for synchronization
and to enable optimistic concurrency: processes abort
only when a conflict exists, rather than when a poten-
tial conflict may occur, as with traditional locks [14, 12].
Transactional memory operations require transactional
data to be buffered, in this case in the cache which has
limited space. Thus, the outcome of a transaction de-
pends on the state of the cache, potentially revealing in-
formation to the thread that initiates the transaction. By
exploiting TSX, an attacker can monitor the cache behav-
ior of another process and receive an abort (call-back) if
the victim process accesses a critical address. This work
demonstrates how TSX can be used to trivially detect
writes to a shared block in memory; to detect reads and
writes by a process co-scheduled on the same core; and,
most critically, to detect reads and writes by a process
executing anywhere on the same processor. This latter
attack works across cores, does not assume that the vic-
tim uses or even knows about TSX, and does not require
any form of shared memory.

The advantages of this mechanism over conven-
tional cache attacks are twofold. The first is that
PRIME+ABORT does not leverage any kind of timer;
as mentioned, several major classes of countermeasures
against cache attacks revolve around either restricting ac-
cess or adding noise to timers. PRIME+ABORT effec-
tively bypasses these countermeasures.

The second advantage is in the efficiency of the attack.
The TSX hardware allows for a victim’s action to directly
trigger the attacking process to take action. This means
the TSX attack can bypass the detection phase required
in conventional attacks. Direct coupling from event to
handler allows PRIME+ABORT to provide over 3× the
throughput of comparable state-of-the-art attacks.

The rest of this work is organized as follows. Sec-

USENIX Association 26th USENIX Security Symposium 51

tion 2 presents background and related work; Section 3
introduces our novel attack, PRIME+ABORT; Section 4
describes experimental results, making comparisons with
existing methods; in Section 5, we discuss potential
countermeasures to our attack; Section 7 concludes.

2 Background and Related Work

2.1 Cache attacks
Cache attacks [35, 7, 11, 21, 25, 29, 33, 34, 43]
are a well-known class of side-channel attacks which
seek to gain information about which memory lo-
cations are accessed by some victim program, and
at what times. In an excellent survey, Ge et
al. [4] group such attacks into three broad categories:
PRIME+PROBE, FLUSH+RELOAD, and EVICT+TIME.
Since EVICT+TIME is only capable of monitoring mem-
ory accesses at the program granularity (whether a
given memory location was accessed during execution
or not), in this paper we focus on PRIME+PROBE and
FLUSH+RELOAD, which are much higher resolution and
have received more attention in the literature. Cache at-
tacks have been shown to be effective for successfully
recovering AES [25], ElGamal [29], and RSA [43] keys,
performing keylogging [8], and spying on messages en-
crypted with TLS [23].

Figure 1 outlines all of the attacks which we will con-
sider. At a high level, each attack consists of a pre-attack
portion, in which important architecture- or runtime-
specific information is gathered; and then an active por-
tion which uses that information to monitor memory ac-
cesses of a victim process. The active portion of exist-
ing state-of-the-art attacks itself consists of three phases:
an “initialization” phase, a “waiting” phase, and a “mea-
surement” phase. The initialization phase prepares the
cache in some way; the waiting phase gives the victim
process an opportunity to access the target address; and
then the measurement phase performs a timed operation
to determine whether the cache state has changed in a
way that implies an access to the target address has taken
place.

Specifics of the initialization and measurement phases
vary by cache attack (discussed below). Some cache at-
tack implementations make a tradeoff in the length of the
waiting phase between accuracy and resolution—shorter
waiting phases give more precise information about the
timing of victim memory accesses, but may increase
the relative overhead of the initialization and measure-
ment phases, which may make it more likely that a vic-
tim access could be “missed” by occurring outside of
one of the measured intervals. In our testing, not all
cache attack implementations and targets exhibited ob-
vious experimental tradeoffs for the waiting phase dura-

tion. Nonetheless, fundamentally, all of these existing at-
tacks can only gain temporal information at the waiting-
interval granularity.

2.1.1 PRIME+PROBE

PRIME+PROBE [35, 21, 25, 34, 29] is the oldest and
largest family of cache attacks, and also the most general.
PRIME+PROBE does not rely on shared memory, unlike
most other cache attacks (including FLUSH+RELOAD
and its variants, described below). The original form of
PRIME+PROBE [35, 34] targets the L1 cache, but recent
work [21, 25, 29] extends it to target the L3 cache in In-
tel processors, enabling PRIME+PROBE to work across
cores and without relying on hyperthreading (Simultane-
ous Multithreading [38]). Like all L3 cache attacks, L3
PRIME+PROBE can detect accesses to either instructions
or data; in addition, L3 PRIME+PROBE trivially works
across VMs.

PRIME+PROBE targets a single cache set, detecting
accesses by any other program (or the operating system)
to any address in that cache set. In its active portion’s ini-
tialization phase (called “prime”), the attacker accesses
enough cache lines from the cache set so as to completely
fill the cache set with its own data. Later, in the mea-
surement phase (called “probe”), the attacker reloads the
same data it accessed previously, this time carefully ob-
serving how much time this operation took. If the victim
did not access data in the targeted cache set, this oper-
ation will proceed quickly, finding its data in the cache.
However, if the victim accessed data in the targeted cache
set, the access will evict a portion of the attacker’s primed
data, causing the reload to be slower due to additional
cache misses. Thus, a slow measurement phase implies
the victim accessed data in the targeted cache set during
the waiting phase. Note that this “probe” phase can also
serve as the “prime” phase for the next repetition, if the
monitoring is to continue.

Two different kinds of initial one-time setup are re-
quired for the pre-attack portion of this attack. The first
is to establish a timing threshold above which the mea-
surement phase is considered “slow” (i.e. likely suffering
from extra cache misses). The second is to determine a
set of addresses, called an “eviction set”, which all map
to the same (targeted) cache set (and which reside in dis-
tinct cache lines). Finding an eviction set is much easier
for an attack targeting the L1 cache than for an attack tar-
geting the L3 cache, due to the interaction between cache
addressing and the virtual memory system, and also due
to the “slicing” in Intel L3 caches (discussed further in
Sections 2.2.1 and 2.2.2).

52 26th USENIX Security Symposium USENIX Association

PRIME+PROBE FLUSH+RELOAD FLUSH+FLUSH EVICT+RELOAD NAÏVE TSX-BASED PRIME+ABORT

Establish timing
threshold

Timing threshold Timing threshold Timing threshold Timing threshold - -

Target acquisition Eviction set Shared mem Shared mem
Eviction set AND

shared mem
Shared mem Eviction set

Initialization
Prime targeted

set
Flush targeted

address
Flush targeted

address
Prime targeted

set

Start transaction Start transaction

Access targeted
address

Prime targeted set

Wait…
Wait Wait Wait Wait Wait Wait

(Victim makes access)

Wait…

Start timer Start timer Start timer Start timer Start timer

Measurement
operation

Prime targeted
set

Access targeted
address

Flush targeted
address

Access targeted
address

Stop timer Stop timer Stop timer Stop timer Stop timer

Repeat (to Wait) (to Initialization) (to Wait) (to Initialization) (to Initialization) (to Initialization)

Detect victim
access if

Time > threshold Time < threshold Time > threshold Time < threshold
Abort status

indicates Cause #6

Abort status
indicates Cause #7

or #8

P
re

-A
tt

ac
k

A
ct

iv
e

A
tt

ac
k Transaction

aborts
Transaction

aborts

A
n

al
ys

is

In
it

ia
liz

at
io

n
W

ai
ti

n
g

M
ea

su
re

m
en

t

B
yp

as
s

“M
ea

su
re

m
en

t”

Figure 1: Comparison of the operation of various cache attacks, including our novel attacks.

2.1.2 FLUSH+RELOAD

The other major class of cache attacks is
FLUSH+RELOAD [7, 11, 43]. FLUSH+RELOAD
targets a specific address, detecting an access by any
other program (or the operating system) to that exact
address (or another address in the same cache line). This
makes FLUSH+RELOAD a much more precise attack
than PRIME+PROBE, which targets an entire cache set
and is thus more prone to noise and false positives.
FLUSH+RELOAD also naturally works across cores
because of shared, inclusive, L3 caches (as explained
in Section 2.2.1). Again, like all L3 cache attacks,
FLUSH+RELOAD can detect accesses to either instruc-
tions or data. Additionally, FLUSH+RELOAD can work
across VMs via the page deduplication exploit [43].

The pre-attack of FLUSH+RELOAD, like that of
PRIME+PROBE, involves determining a timing thresh-
old, but is limited to a single line instead of an entire
“prime” phase. However, FLUSH+RELOAD does not re-
quire determining an eviction set. Instead, it requires
the attacker to identify an exact target address; namely,
an address in the attacker’s virtual address space which
maps to the physical address the attacker wants to mon-
itor. Yarom and Falkner [43] present two ways to do
this, both of which necessarily involve shared memory;
one exploits shared libraries, and the other exploits page

deduplication, which is how FLUSH+RELOAD can work
across VMs. Nonetheless, this step’s reliance on shared
memory is a critical weakness in FLUSH+RELOAD, lim-
iting it to only be able to monitor targets in shared mem-
ory.

In FLUSH+RELOAD’s initialization phase, the attacker
“flushes” the target address out of the cache using Intel’s
CLFLUSH instruction. Later, in the measurement phase,
the attacker “reloads” the target address (by accessing
it), carefully observing the time for the access. If the
access was “fast”, the attacker may conclude that another
program accessed the address, causing it to be reloaded
into the cache.

An improved variant of FLUSH+RELOAD,
FLUSH+FLUSH [7], exploits timing variation in the
CLFLUSH instruction itself; this enables the attack to
combine its measurement and initialization phases,
much like PRIME+PROBE. A different variant,
EVICT+RELOAD [8], performs the initialization phase
by evicting the cacheline with PRIME+PROBE’s “prime”
phase, allowing the attack to work without the CLFLUSH
instruction at all—e.g., when the instruction has been
disabled, as in Google Chrome’s NaCl [6].

USENIX Association 26th USENIX Security Symposium 53

2.1.3 Timer-Free Cache Attacks

All of the attacks so far discussed—PRIME+PROBE,
FLUSH+RELOAD, and variants—are still fundamentally
timing attacks, exploiting timing differences as their un-
derlying attack vector. One recent work which, like
this work, proposes a cache attack without reference to
timers is that of Guanciale et al. [10]. Instead of timing
side channels, Guanciale et al. rely on the undocumented
hardware behavior resulting from disobeying ISA pro-
gramming guidelines, specifically with regards to virtual
address aliasing and self-modifying code. However, they
demonstrate their attacks only on the ARM architecture,
and they themselves suggest that recent Intel x86-64 pro-
cessors contain mechanisms that would render their at-
tacks ineffective. In contrast, our attack exploits weak-
nesses specifically in recent Intel x86-64 processors, so
in that respect our attack can be seen as complementary
to Guanciale et al.’s work. We believe that our work, in
addition to utilizing a novel attack vector (Intel’s hard-
ware transactional memory support), is the first timer-
free cache attack to be demonstrated on commodity Intel
processors.

2.2 Relevant Microarchitecture

2.2.1 Caches

[Basic Background] Caches in modern processors store
data that is frequently or recently used, in order to reduce
access time for that data on subsequent references. Data
is stored in units of “cache lines” (a fixed architecture-
dependent number of bytes). Caches are often orga-
nized hierarchically, with a small but fast “L1” cache, a
medium-sized “L2” cache, and a large but comparatively
slower “L3” cache. At each level of the hierarchy, there
may either be a dedicated cache for each processor core,
or a single cache shared by all processor cores.

Commonly, caches are “set-associative” which allows
any given cacheline to reside in only one of N locations
in the cache, where N is the “associativity” of the cache.
This group of N locations is called a “cache set”. Each
cacheline is assigned to a unique cache set by means of
its “set index”, typically a subset of its address bits. Once
a set is full (the common case) any access to a cacheline
with the given set index (but not currently in the cache)
will cause one of the existing N cachelines with the same
set index to be removed, or “evicted”, from the cache.
[Intel Cache Organization] Recent Intel processors
contain per-core L1 instruction and data caches, per-core
unified L2 caches, and a large L3 cache which is shared
across cores. In this paper we focus on the Skylake ar-
chitecture which was introduced in late 2015; important
Skylake cache parameters are provided in Table 1.

Table 1: Relevant cache parameters in the Intel Skylake
architecture.

L1-Data L1-Inst L2 L3
Size 32 KB 32 KB 256 KB 2-8 MB1

Assoc 8-way 8-way 4-way 16-way
Sharing Per-core Per-core Per-core Shared
Line size 64 B 64 B 64 B 64 B
1 depending on model. This range covers all Skylake processors

(server, desktop, mobile, embedded) currently available as of Jan-
uary 2017 [20].

[Inclusive Caches] Critical to all cross-core cache at-
tacks, the L3 cache is inclusive, meaning that every-
thing in all the per-core caches must also be held in
the L3. This has two important consequences which
are key to enabling both L3-targeting PRIME+PROBE
and FLUSH+RELOAD to work across cores. First, any
data accessed by any core must be brought into not only
the core’s private L1 cache, but also the L3. If an at-
tacker has “primed” a cache set in the L3, this access to
a different address by another core necessarily evicts one
of the attacker’s cachelines, allowing PRIME+PROBE to
detect the access. Second, any cacheline evicted from
the L3 (e.g., in a “flush” step) must also be invalidated
from all cores’ private L1 and L2 caches. Any subse-
quent access to the cacheline by any core must fetch the
data from main memory and bring it to the L3, causing
FLUSH+RELOAD’s subsequent “reload” phase to regis-
ter a cache hit.
[Set Index Bits] The total number of cache sets in each
cache can be calculated as (total number of cache lines)
/ (associativity), where the total number of cache lines is
(cache size) / (line size). Thus, the Skylake L1 caches
have 64 sets each, the L2 caches have 1024 sets each,
and the shared L3 has from 2K to 8K sets, depending on
the processor model.

In a typical cache, the lowest bits of the address (called
the “line offset”) determine the position within the cache
line; the next-lowest bits of the address (called the “set
index”) determine in which cache set the line belongs,
and the remaining higher bits make up the “tag”. In our
setting, the line offset is always 6 bits, while the set index
will vary from 6 bits (L1) to 13 bits (L3) depending on
the number of cache sets in the cache.
[Cache Slices and Selection Hash Functions] However,
in recent Intel architectures (including Skylake), the sit-
uation is more complicated than this for the L3. Specif-
ically, the L3 cache is split into several “slices” which
can be accessed concurrently; the slices are connected
on a ring bus such that each slice has a different latency
depending on the core. In order to balance the load on
these slices, Intel uses a proprietary and undocumented
hash function, which operates on a physical address (ex-

54 26th USENIX Security Symposium USENIX Association

cept the line offset) to select which slice the address ‘be-
longs’ to. The output of this hash effectively serves as
the top N bits of the set index, where 2N is the number
of slices in the system. Therefore, in the case of an 8
MB L3 cache with 8 slices, the set index consists of 10
bits from the physical address and 3 bits calculated using
the hash function. For more details, see [25], [32], [44],
[16], or [22].

This hash function has been reverse-engineered for
many different processors in Intel’s Sandy Bridge [25,
32, 44], Ivy Bridge [16, 22, 32], and Haswell [22, 32]
architectures, but to our knowledge has not been reverse-
engineered for Skylake yet. Not knowing the precise
hash function adds additional difficulty to determining
eviction sets for PRIME+PROBE—that is, finding sets of
addresses which all map to the same L3 cache set. How-
ever, our attack (following the approach of Liu et al. [29])
does not require knowledge of the specific hash function,
making it more general and more broadly applicable.

2.2.2 Virtual Memory
In a modern virtual memory system, each process has a
set of virtual addresses which are mapped by the oper-
ating system and hardware to physical addresses at the
granularity of pages [2]. The lowest bits of an address
(referred to as the page offset) remain constant during
address translation. Pages are typically 4 KB in size, but
recently larger pages, for instance of size 2 MB, have be-
come widely available for use at the option of the pro-
gram [25, 29]. Crucially, an attacker may choose to
use large pages regardless of whether the victim does or
not [29].

Skylake caches are physically-indexed, meaning that
the physical address of a cache line (and not its virtual ad-
dress) determines the cache set which the line is mapped
into. Like the slicing of the L3 cache, physical indexing
adds additional difficulty to the problem of determining
eviction sets for PRIME+PROBE, as it is not immediately
clear which virtual addresses may have the same set in-
dex bits in their corresponding physical addresses. Pages
make this problem more manageable, as the bottom 12
bits (for standard 4 KB pages) of the address remain con-
stant during translation. For the L1 caches, these 12 bits
contain the entire set index (6 bits of line offset + 6 bits of
set index), so it is easy to choose addresses with the same
set index. This makes the problem of determining evic-
tion sets trivial for L1 attacks. However, L3 attacks must
deal with both physical indexing and cache slicing when
determining eviction sets. Using large pages helps, as the
21-bit large-page offset completely includes the set index
bits (meaning they remain constant during translation),
leaving only the problem of the hash function. However,
the hash function is not only an unknown function itself,
but it also incorporates bits from the entire physical ad-

Table 2: Availability of Intel TSX in recent Intel CPUs,
based on data drawn from Intel ARK [20] in January
2017. Since Broadwell, all server CPUs and a majority
of i7/i5 CPUs support TSX.

Series
(Release1) Server2 i7/i5 i3/m/etc3

Kaby Lake
(Jan 2017) 3/3 (100%) 23/32 (72%) 12/24 (50%)

Skylake
(Aug 2015) 23/23 (100%) 27/42 (64%) 4/34 (12%)

Broadwell
(Sep 2014) 77/77 (100%) 11/22 (50%) 2/18 (11%)

Haswell
(Jun 2013) 37/85 (44%) 2/87 (2%) 0/82 (0%)

1 for the earliest available processors in the series
2 Xeon and Pentium-D
3 (i3/m/Pentium/Celeron)

dress, including bits that are still translated even when
using large pages.

2.3 Transactional Memory and TSX

Transactional Memory (TM) has received significant at-
tention from the computer architecture and systems com-
munity over the past two decades [14, 13, 37, 45]. First
proposed by Herlihy and Moss in 1993 as a hardware al-
ternative to locks [14], TM is noteworthy for its simplifi-
cation of synchronization primitives and for its ability to
provide optimistic concurrency.

Unlike traditional locks which require threads to wait
if a conflict is possible, TM allows multiple threads to
proceed in parallel and only abort in the event of a con-
flict [36]. To detect a conflict, TM tracks each thread’s
read and write sets and signals an abort when a conflict is
found. This tracking can be performed either by special
hardware [14, 13, 45] or software [37].

Intel’s TSX instruction set extension for x86 [12, 19]
provides an implementation of hardware TM and is
widely available in recent Intel CPUs (see Table 2).

TSX allows any program to identify an arbitrary sec-
tion of its code as a ‘transaction’ using explicit XBEGIN
and XEND instructions. Any transaction is guaranteed to
either: (1) complete, in which case all memory changes
which happened during the transaction are made visible
atomically to other processes and cores, or (2) abort, in
which case all memory changes which happened during
the transaction, as well as all other changes (e.g. to reg-
isters), are discarded. In the event of an abort, control
is transferred to a fallback routine specified by the user,
and a status code provides the fallback routine with some
information about the cause of the abort.

From a security perspective, the intended uses of
hardware transactional memory (easier synchronization

USENIX Association 26th USENIX Security Symposium 55

Table 3: Causes of transactional aborts in Intel TSX
1. Executing certain instructions, such as CPUID or the explicit

XABORT instruction
2. Executing system calls
3. OS interrupts1

4. Nesting transactions too deeply
5. Access violations and page faults
6. Read-Write or Write-Write memory conflicts with other

threads or processes (including other cores) at the cacheline
granularity—whether those other processes are using TSX or
not

7. A cacheline which has been written during the transaction
(i.e., a cacheline in the transaction’s “write set”) is evicted
from the L1 cache

8. A cacheline which has been read during the transaction (i.e.,
a cacheline in the transaction’s “read set”) is evicted from the
L3 cache

1 This means that any transaction may abort, despite the absence of
memory conflicts, through no fault of the programmer. The pe-
riodic nature of certain interrupts also sets an effective maximum
time limit on any transaction, which has been measured at about
4 ms [41].

or optimistic concurrency) are unimportant, so we will
merely note that we can place arbitrary code inside both
the transaction and the fallback routine, and whenever
the transaction aborts, our fallback routine will imme-
diately be given a callback with a status code. There
are many reasons a TSX transaction may abort; impor-
tant causes are listed in Table 3. Most of these are drawn
from the Intel Software Developer’s Manual [19], but the
specifics of Causes #7 and #8—in particular the asym-
metric behavior of TSX with respect to read sets and
write sets—were suggested by Dice et al. [3]. Our exper-
imental results corroborate their suggestions about these
undocumented implementation details.

While a transaction is in process, an arbitrary amount
of data must be buffered (hidden from the memory sys-
tem) or tracked until the transaction completes or aborts.
In TSX, this is done in the caches—transactionally writ-
ten lines are buffered in the L1 data cache, and transac-
tionally read lines marked in the L1–L3 caches. This
has the important ramification that the cache size and
associativity impose a limit on how much data can be
buffered or tracked. In particular, if cache lines being
buffered or tracked by TSX must be evicted from the
cache, this necessarily causes a transactional abort. In
this way, details about cache activity may be exposed
through the use of transactions.

TSX has been addressed only rarely in a security
context; to the best of our knowledge, there are only
two works on the application of TSX to security to
date [9, 24]. Guan et al. use TSX as part of a defense
against memory disclosure attacks [9]. In their system,
operations involving the plaintext of sensitive data nec-
essarily occur inside TSX transactions. This structurally
ensures that this plaintext will never be accessed by other

processes or written back to main memory (in either case,
a transactional abort will roll back the architectural state
and invalidate the plaintext data).

Jang et al. exploit a timing side channel in TSX itself
in order to break kernel address space layout randomiza-
tion (KASLR) [24]. Specifically, they focus on Abort
Cause #5, access violations and page faults. They note
that such events inside a transaction trigger an abort but
not their normal respective handlers; this means the op-
erating system or kernel are not notified, so the attack is
free to trigger as many access violations and page faults
as it wants without raising suspicions. They then exploit
this property and the aforementioned timing side chan-
nel to determine which kernel pages are mapped and un-
mapped (and also which are executable).

Neither of these works enable new attacks on memory
accesses, nor do they eliminate the need for timers in
attacks.

3 Potential TSX-based Attacks

We present three potential attacks, all of which share
their main goal with cache attacks—to monitor which
cachelines are accessed by other processes and when.
The three attacks we will present leverage Abort Causes
#6, 7, and 8 respectively. Figure 1 outlines all three of
the attacks we will present, as the PRIME+ABORT en-
try in the figure applies to both PRIME+ABORT–L1 and
PRIME+ABORT–L3.

All of the TSX-based attacks which we will propose
have the same critical structural benefit in common. This
benefit, illustrated in Figure 1, is that these attacks have
no need for a “measurement” phase. Rather than having
to conduct some (timed) operation to determine whether
the cache state has been modified by the victim, they sim-
ply receive a hardware callback through TSX immedi-
ately when a victim access takes place. In addition to
the reduced overhead this represents for the attack pro-
cedure, this also means the attacker can be actively wait-
ing almost indefinitely until the moment a victim access
occurs—the attacker does not need to break the attack
into predefined intervals. This results in a higher res-
olution attack, because instead of only coarse-grained
knowledge of when a victim access occurred (i.e. which
predefined interval), the attacker gains precise estimates
of the relative timing of victim accesses.

All of our proposed TSX-based attacks also share a
structural weakness when compared to PRIME+PROBE
and FLUSH+RELOAD. Namely, they are unable
to monitor multiple targets (cache sets in the
case of PRIME+PROBE, addresses in the case of
FLUSH+RELOAD) simultaneously while retaining the
ability to distinguish accesses to one target from ac-
cesses to another. PRIME+PROBE and FLUSH+RELOAD

56 26th USENIX Security Symposium USENIX Association

are able to do this at the cost of increased overhead;
effectively, a process can monitor multiple targets con-
currently by performing multiple initialization stages,
having a common waiting stage, and then performing
multiple measurement stages, with each measurement
stage revealing the activity for the corresponding target.
In contrast, although our TSX-based attacks could
monitor multiple targets at once, they would be unable
to distinguish events for one target from events for
another without additional outside information. Some
applications of PRIME+PROBE and FLUSH+RELOAD
rely on this ability (e.g. [33]), and adapting them to
rely on PRIME+ABORT instead would not be triv-
ial. However, others, including the attack presented
in Section 4.4, can be straightforwardly adapted to
utilize PRIME+ABORT as a drop-in replacement for
PRIME+PROBE or FLUSH+RELOAD.

We begin by discussing the simplest, but also
least generalizable, of our TSX-based attacks, ul-
timately building to our proposed primary attack,
PRIME+ABORT–L3.

3.1 Naı̈ve TSX-based Attack

Abort Cause #6 enables a potentially powerful, but lim-
ited attack.

From Cause #6, we can get a transaction abort (which
for our purposes is an immediate, fast hardware callback)
whenever there is a read-write or write-write conflict be-
tween our transaction and another process. This leads
to a natural and simple attack implementation, where we
simply open a transaction, access our target address, and
wait for an abort (with the proper abort status code); on
abort, we know the address was accessed by another pro-
cess.

The style of this attack is reminiscent of
FLUSH+RELOAD [43] in several ways. It targets a
single, precise cacheline, rather than an entire cache
set as in PRIME+PROBE and its variants. It does not
require a (comparatively slow) “prime eviction set”
step, providing fast and low-overhead monitoring of
the target cacheline. Also like FLUSH+RELOAD, it
requires the attacker to acquire a specific address to
target, for instance exploiting shared libraries or page
deduplication.

Like the other attacks using TSX, it benefits in per-
formance by not needing the “measurement” phase to
detect a victim access. In addition to the performance
benefit, this attack would also be harder to detect and de-
fend against. It would execute without any kind of timer,
mitigating several important classes of defenses (see Sec-
tion 5). It would also be resistant to most types of cache-
based defenses; in fact, this attack has so little to do with
the cache at all that it could hardly be called a cache at-

tack, except that it happens to expose the same informa-
tion as standard cache attacks such as FLUSH+RELOAD
or PRIME+PROBE do.

However, in addition to only being able to moni-
tor target addresses in shared memory (the key weak-
ness shared by all variants of FLUSH+RELOAD), this
attack has another critical shortcoming. Namely, it can
only detect read-write or write-write conflicts, not read-
read conflicts. This means that one or the other of the
processes—either the attacker or the victim—must be is-
suing a write command in order for the access to be de-
tected, i.e. cause a transactional abort. Therefore, the
address being monitored must not be in read-only mem-
ory. Combining this with the earlier restriction, we find
that this attack, although powerful, can only monitor ad-
dresses in writable shared memory. We find this depen-
dence to render it impractical for most real applications,
and for the rest of the paper we focus on the other two
attacks we will present.

3.2 PRIME+ABORT–L1

The second attack we will present, called
PRIME+ABORT–L1, is based on Abort Cause #7.
Abort Cause #7 provides us with a way to monitor
evictions from the L1 cache in a way that is precise and
presents us with, effectively, an immediate hardware
callback in the form of a transactional abort. This allows
us to build an attack in the PRIME+PROBE family, as the
key component of PRIME+PROBE involves detecting
cacheline evictions. This attack, like all attacks in the
PRIME+PROBE family, does not depend in any way on
shared memory; but unlike other attacks, it will also not
depend on timers.

Like other PRIME+PROBE variants, our attack re-
quires a one-time setup phase where we determine an
eviction set for the cache set we wish to target; but
like early PRIME+PROBE attacks [35, 34], we find this
task trivial because the entire L1 cache index lies within
the page offset (as explained earlier). Unlike other
PRIME+PROBE variants, for PRIME+ABORT this is the
sole component of the setup phase; we do not need to
find a timing threshold, as we do not rely on timing.

The main part of PRIME+ABORT–L1 involves the
same “prime” phase as a typical PRIME+PROBE attack,
except that it opens a TSX transaction first. Once the
“prime” phase is completed, the attack simply waits for
an abort (with the proper abort status code). Upon receiv-
ing an abort, the attacker can conclude that some other
program has accessed an address in the target cache set.
This is similar to the information gleaned by ordinary
PRIME+PROBE.

The reason this works is that, since we will hold an en-
tire cache set in the write set of our transaction, any ac-

USENIX Association 26th USENIX Security Symposium 57

cess to a different cache line in that set by another process
will necessarily evict one of our cachelines and cause our
transaction to abort due to Cause #7. This gives us an
immediate hardware callback, obviating the need for any
“measurement” step as in traditional cache attacks. This
is why we call our method PRIME+ABORT—the abort
replaces the “probe” step of traditional PRIME+PROBE.

3.3 PRIME+ABORT–L3
PRIME+ABORT–L1 is fast and powerful, but because it
targets the (core-private) L1 cache, it can only spy on
threads which share its core; and since it must execute
simultaneously with its victim, this means it and its vic-
tim must be in separate hyperthreads on the same core.
In this section we present PRIME+ABORT–L3, an attack
which overcomes these restrictions by targeting the L3
cache. The development of PRIME+ABORT–L3 from
PRIME+ABORT–L1 mirrors the development of L3-
targeting PRIME+PROBE [29, 21, 25] from L1-targeting
PRIME+PROBE [35, 34], except that we use TSX.
PRIME+ABORT–L3 retains all of the TSX-provided ad-
vantages of PRIME+ABORT–L1, while also (like L3
PRIME+PROBE) working across cores, easily detecting
accesses to either instructions or data, and even working
across virtual machines.

PRIME+ABORT–L3 uses Abort Cause #8 to moni-
tor evictions from the L3 cache. The only meaningful
change this entails to the active portion of the attack is
performing reads rather than writes during the “prime”
phase, in order to hold the primed cachelines in the read
set of the transaction rather than the write set. For the
pre-attack portion, PRIME+ABORT–L3, like other L3
PRIME+PROBE attacks, requires a much more sophis-
ticated setup phase in which it determines eviction sets
for the L3 cache. This is described in detail in the next
section.

3.4 Finding eviction sets
The goal of the pre-attack phase for PRIME+ABORT is to
determine an eviction set for a specified target address.
For PRIME+ABORT–L1, this is straightforward, as de-
scribed in Section 2.2.2. However, for PRIME+ABORT–
L3, we must deal with both physical indexing and cache
slicing in order to find L3 eviction sets. Like [29] and
[21], we use large (2 MB) pages in this process as a con-
venience. With large pages, it becomes trivial to choose
virtual addresses that have the same physical set index
(i.e. agree in bits 6 to N, for some processor-dependent
N, perhaps 15), again as explained in Section 2.2.2. We
will refer to addresses which agree in physical set in-
dex (and in line offset, i.e. bits 0 to 5) as set-aligned ad-
dresses.

Algorithm 1: Dynamically generating a prototype
eviction set for each cache slice, as implemented
in [42]

Input: a set of potentially conflicting cachelines lines, all
set-aligned

Output: a set of prototype eviction sets, one eviction set for each
cache slice; that is, a “prototype group”

group← {};
workingSet← {};
while lines is not empty do

repeat forever :
line← random member of lines;
remove line from lines;
if workingSet evicts line then // Algorithm 2 or 3

c← line;
break;

end
add line to workingSet;

end
foreach member in workingSet do

remove member from workingSet;
if workingSet evicts c then // Algorithm 2 or 3

add member back to lines;
else

add member back to workingSet;
end

end
foreach line in lines do

if workingSet evicts line then // Algorithm 2 or 3

remove line from lines;
end

end
add workingSet to group;
workingSet← {};

end
return group;

We generate eviction sets dynamically using the algo-
rithm from Mastik [42] (inspired by that in [29]), which
is shown as Algorithm 1. However, for the subroutine
where Mastik uses timing methods to evaluate potential
eviction sets (Algorithm 2), we use TSX methods instead
(Algorithm 3).

Algorithm 3, a subroutine of Algorithm 1, demon-
strates how Intel TSX is used to determine whether a can-
didate eviction set can be expected to consistently evict
a given target cacheline. If “priming” the eviction set
(accessing all its lines) inside a transaction followed by
accessing the target cacheline consistently results in an
immediate abort, we can conclude that a transaction can-
not hold both the eviction set and the target cacheline in
its read set at once, which means that together they con-
tain at least (associativity+ 1, or 17 in our case) lines
which map to the same cache slice and cache set.

Conceptually, the algorithm for dynamically generat-
ing an eviction set for any given address has two phases:
first, creating a “prototype group”, and second, special-
izing it to form an eviction set for the desired target ad-

58 26th USENIX Security Symposium USENIX Association

Algorithm 2: PRIME+PROBE (timing-based)
method for determining whether an eviction set
evicts a given cacheline, as implemented in [42]

Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

times← {};
repeat 16 times :

access line;
repeat 20 times :

foreach member in es do
access member;

end
end
timed access to line;
times← times + {elapsed time};

end
if median of times > predetermined threshold then return true;
else return false;

Algorithm 3: PRIME+ABORT (TSX-based) method
for determining whether an eviction set evicts a given
cacheline

Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

aborts← 0;
commits← 0;

while aborts < 16 and commits < 16 do
begin transaction;
foreach member in es do

access member;
end
access line;
end transaction;
if transaction committed then increment commits;
else if transaction aborted with appropriate status code then

increment aborts;
end
if aborts >= 16 then return true;
else return false;

dress. The algorithms shown (Algorithms 1, 2, and 3) to-
gether constitute the first phase of this larger algorithm.
In this first phase, we use only set-aligned addresses, not-
ing that all such addresses, after being mapped to an L3
cache slice, necessarily map to the same cache set inside
that slice. This phase creates one eviction set for each
cache slice, targeting the cache set inside that slice with
the given set index. We call these “prototype” eviction
sets, and we call the resulting group of one “prototype”
eviction set per cache slice a “prototype group”.

Once we have a prototype group generated by Algo-
rithm 1, we can obtain an eviction set for any cache set
in any cache slice by simply adjusting the set index of
each address in one of the prototype eviction sets. Not
knowing the specific cache-slice-selection hash function,
it will be necessary to iterate over all prototype eviction
sets (one per slice) in order to find the one which collides

with the target on the same cache slice. If we do not
know the (physical) set index of our target, we can also
iterate through all possible set indices (with each pro-
totype eviction set) to find the appropriate eviction set,
again following the procedure from Liu et al. [29].

4 Results

4.1 Characteristics of the Intel
Skylake Architecture

Our test machine has an Intel Skylake i7-6600U pro-
cessor, which has two physical cores and four virtual
cores. It is widely reported (e.g., in all of [16, 22, 25,
29, 32, 44]) that Intel processors have one cache slice per
physical core, based on experiments conducted on Sandy
Bridge, Ivy Bridge, and Haswell processors. However,
our testing on the Skylake dual-core i7-6600U leads us
to believe that it has four cache slices, contrary to pre-
vious trends which would predict it has only two. We
validate this claim by using Algorithm 1 to produce four
distinct eviction sets for large-page-aligned addresses.
Then we test our four distinct eviction sets on many ad-
ditional large-page-aligned addresses not used in Algo-
rithm 1. We find that each large-page-aligned address
conflicts with exactly one of the four eviction sets (by
Algorithm 3), and further, that the conflicts are spread
relatively evenly over the four sets. This convinces us
that each of our four eviction sets represents set index 0
on a different cache slice, and thus that there are indeed
four cache slices in the i7-6600U.

Having determined the number of cache slices, we can
now calculate the number of low-order bits in an address
that must be fixed to create groups of set-aligned ad-
dresses. For our i7-6600U, this is 16. Henceforth we can
use set-aligned addresses instead of large-page-aligned
addresses, which is an efficiency gain.

4.2 Dynamically Generating Eviction Sets
In the remainder of the Results section we com-
pare PRIME+ABORT–L3 to L3 PRIME+PROBE as im-
plemented in [42]. We begin by comparing the
PRIME+ABORT and PRIME+PROBE versions of Algo-
rithm 1 for dynamically generating prototype eviction
sets.

Table 4 compares the runtimes of the PRIME+ABORT
and PRIME+PROBE versions of Algorithm 1. The
PRIME+ABORT-based method is over 5× faster than the
PRIME+PROBE-based method in the median case, over
15× faster in the best case, and over 40% faster in the
worst case.

Next, we compare the “coverage” of prototype groups
(sets of four prototype eviction sets) derived and tested

USENIX Association 26th USENIX Security Symposium 59

Table 4: Runtimes of PRIME+ABORT- and
PRIME+PROBE-based versions of Algorithm 1
to generate a “prototype group” of eviction sets
(data based on 1000 runs of each version of Al-
gorithm 1)

PRIME+ABORT PRIME+PROBE

Min 4.5 ms 68.3 ms
1Q 10.1 ms 76.6 ms
Median 15.0 ms 79.3 ms
3Q 21.3 ms 82.0 ms
Max 64.7 ms 91.0 ms

with the two methods. We derive 10 prototype groups
with each version of Algorithm 1; then, for each pro-
totype group, we use either timing-based or TSX-based
methods to test 1000 additional set-aligned addresses not
used for Algorithm 1 (a total of 10,000 additional set-
aligned addresses for PRIME+ABORT and 10,000 for
PRIME+PROBE). The testing procedure is akin to a sin-
gle iteration of the outer loop in Algorithm 2 or 3 re-
spectively. Using this procedure, each of the 10,000 set-
aligned addresses is tested 10,000 times against each of
the four prototype eviction sets in the prototype group.
This produces four “detection rates” for each set-aligned
address (one per prototype eviction set). We assume that
the highest of these four detection rates corresponds to
the prototype eviction set from the same cache slice as
the tested address, and we call this detection rate the
“max detection rate” for the set-aligned address. Both
PRIME+ABORT and PRIME+PROBE methods result in
“max detection rates” which are consistently indistin-

guishable from 100%. However, we note that out of
the 100 million trials in total, 13 times we observed the
PRIME+PROBE-based method fail to detect the access
(resulting in a “max detection rate” of 99.99% in 13
cases), whereas with the PRIME+ABORT-based method,
all 100 million trials were detected, for perfect max de-
tection rates of 100.0%. This result is due to the struc-
tural nature of transactional conflicts—it is impossible
for a transaction with a read set of size (1+associativity)
to ever successfully commit; it must always abort.

Since each address maps to exactly one cache slice,
and ideally each eviction set contains lines from only
one cache slice, we expect that any given set-aligned
address conflicts with only one out of the four proto-
type eviction sets in a prototype group. That is, we ex-
pect that out of the four detection rates computed for
each line (one per prototype eviction set), one will be
very high (the “max detection rate”), and the other three
will be very low. Figure 2 shows the “second-highest
detection rate” for each line—that is, the maximum of
the remaining three detection rates for that line, which
is a measure of false positives. For any given detec-
tion rate on the x-axis, the figure shows what percent-
age of the 10,000 set-aligned addresses had a false-
positive detection rate at or above that level. Whenever
the “second-highest detection rate” is greater than zero,
it indicates that the line appeared to be detected by a pro-
totype eviction set meant for an entirely different cache
slice (i.e. a false positive detection). In Figure 2, we
see that with the PRIME+PROBE-based method, around
22% of lines have “second-highest detection rates” over
5%, around 18% of lines have “second-highest detec-

0% 20% 40% 60% 80% 100%

Detection Rate

0%

50%

100%

%
of

lin
es

h
av

in
g

a
se

co
n

d
h

ig
h

es
t

d
et

ec
ti

on
ra

te
at

le
as

t
th

at
h

ig
h

Prime+Abort

Prime+Probe

Figure 2: “Double coverage” of prototype groups generated by PRIME+ABORT- and PRIME+PROBE-based versions
of Algorithm 1. With PRIME+PROBE, some tested cachelines are reliably detected by more than one prototype eviction
set. In contrast, with PRIME+ABORT each tested cacheline is reliably detected by only one prototype eviction set.

60 26th USENIX Security Symposium USENIX Association

tion rates” over 10%, and around 7.5% of lines even
have “second-highest detection rates” of 100%, mean-
ing that more than one of the “prototype eviction sets”
each detected that line in 100% of the 10,000 trials. In
contrast, with the PRIME+ABORT-based method, none
of the 10,000 lines tested had “second-highest detection
rates” over 1%. PRIME+ABORT produces very few false
positives and cleanly monitors exactly one cache set in
exactly one cache slice.

4.3 Detecting Memory Accesses

Figures 3, 4, and 5 show the success of PRIME+ABORT
and two variants of PRIME+PROBE in detecting the
memory accesses of an artificial victim thread running
on a different physical core from the attacker. The vic-
tim thread repeatedly accesses a single memory loca-
tion for the duration of the experiment—in the “treat-
ment” condition, it accesses the target (monitored) lo-
cation, whereas in the “control” condition, it accesses an
unrelated location. We introduce delays (via busy-wait)
of varying lengths into the victim’s code in order to vary
the frequency at which it accesses the target location (or
unrelated location for control). Figures 3, 4, and 5 plot
the number of events observed by the respective attack-
ers, vs. the actual number of accesses by the victim, in
“control” and “treatment” scenarios. Data were collected
from 100 trials per attacker, each entailing separate runs
of Algorithm 1 and new targets. The y = x line is shown
for reference in all figures; it indicates perfect perfor-
mance for the “treatment” condition, with all events de-
tected but no false positives. Perfect performance in the
“control” condition, naturally, is values as low as possi-
ble in all cases.

We see in Figure 3 that PRIME+ABORT detects a large
fraction of the victim’s accesses at frequencies up to
several hundred thousand accesses per second, scaling
up smoothly and topping out at a maximum detection
speed (on our test machine) of around one million events
per second. PRIME+ABORT exhibits this performance
while also displaying relatively low false positive rates
of around 200 events per second, or one false positive
every 5000 µs. The close correlation between number of
detected events and number of victim accesses indicates
PRIME+ABORT’s low overheads—in fact, we measured
its transactional abort handler as executing in 20-40 ns—
which allow it to be essentially “always listening” for
victim accesses. Also, it demonstrates PRIME+ABORT’s
ability to accurately count the number of victim accesses,
despite only producing a binary output (access or no ac-
cess) in each transaction. Its high speed and low over-
heads allow it to catch each victim access in a separate
transaction.

Figure 4 shows the performance of unmodified

PRIME+PROBE as implemented in Mastik [42]1. We see
false positive rates which are significantly higher than
those observed for PRIME+ABORT—over 2000 events
per second, or one every 500 µs. Like PRIME+ABORT,
this implementation of PRIME+PROBE appears to have a
top speed around one million accesses detected per sec-
ond under our test conditions. But most interestingly, we
observe significant “oversampling” at low frequencies—
PRIME+PROBE reports many more events than actually
occurred. For instance, when the victim thread performs
2600 accesses per second, we expect to observe 2600
events per second, plus around 2000 false positives per
second as before. However, we actually observe over
18,000 events per second in the median case. Likewise,
when the victim thread provides 26,000 accesses per sec-
ond, we observe over 200,000 events per second in the
median case. Analysis shows that for this implementa-
tion of PRIME+PROBE on our hardware, single accesses
can cause long streaks of consecutive observed events,
sometimes as long as hundreds of observed events. We
believe this to be due to the interaction between this
PRIME+PROBE implementation and our hardware’s L3
cache replacement policy. One plausible explanation for
why PRIME+ABORT is not similarly afflicted, is that the
replacement policy may prioritize keeping lines that are
part of active transactions, evicting everything else first.
This would be a sensible policy for Intel to implement, as
it would minimize the number of unwanted/unnecessary
aborts. In our setting, it benefits PRIME+ABORT by en-
suring that a “prime” step inside a transaction cleanly
evicts all other lines.

To combat the oversampling behavior observed in
PRIME+PROBE, we investigate a modified implementa-
tion of PRIME+PROBE which “collapses” streaks of ob-
served events, meaning that a streak of any length is sim-
ply counted as a single observed event. Results with this
modified implementation are shown in Figure 5. We see
that this strategy is effective in combating oversampling,
and also reduces the number of false positives to around
250 per second or one every 4000 µs. However, this im-
plementation of PRIME+PROBE performs more poorly
at high frequencies, having a top speed around 300,000
events per second compared to the one million per sec-
ond of the other two attacks. This effect can be explained
by the fact that as the victim access frequency increases,
streaks of observed events become more and more likely
to “hide” real events (multiple real events occur in the
same streak)—in the limit, we expect to observe an event

1We make one slight modification suggested by the maintainer of
Mastik: every probe step, we actually perform multiple probes, “count-
ing” only the first one. In our case we perform five probes at a time,
still alternating between forwards and backwards probes. All of the
results which we present for the “unmodified” implementation include
this slight modification.

USENIX Association 26th USENIX Security Symposium 61

Figure 3: Access detection rates for PRIME+ABORT in the “control” and “treatment” conditions. Data were collected
over 100 trials, each involving several different victim access speeds. Shaded regions indicate the range of the middle
75% of the data; lines indicate the medians. The y = x line is added for reference and indicates perfect performance
for the “treatment” condition (all events detected but no false positives or oversampling).

Figure 4: Access detection rates for unmodified PRIME+PROBE in the “control” and “treatment” conditions. Data
were collected over 100 trials, each involving several different victim access speeds. Shaded regions indicate the
range of the middle 75% of the data; lines indicate the medians. The y = x line is added for reference and indicates
perfect performance for the “treatment” condition (all events detected but no false positives or oversampling).

62 26th USENIX Security Symposium USENIX Association

Figure 5: Access detection rates for our modified implementation of PRIME+PROBE which “collapses” streaks. Data
were collected over 100 trials, each involving several different victim access speeds. Shaded regions indicate the range
of the middle 75% of the data; lines indicate the medians. The y = x line is added for reference and indicates perfect
performance for the “treatment” condition (all events detected but no false positives or oversampling).

during every probe, but this approach will observe only
a single streak and indicate a single event occurred.

Observing the two competing implementations of
PRIME+PROBE on our hardware reveals an interesting
tradeoff. The original implementation has good high fre-
quency performance, but suffers from both oversampling
and a high number of false positives. In contrast, the
modified implementation has poor high frequency per-
formance, but does not suffer from oversampling and
exhibits fewer false positives. For the remainder of
this paper we consider the modified implementation of
PRIME+PROBE only, as we expect that its improved
accuracy and fewer false positives will make it more
desirable for most applications. Finally, we note that
PRIME+ABORT combines the desirable characteristics
of both PRIME+PROBE implementations, as it exhibits
the fewest false positives, does not suffer from oversam-
pling, and has good high frequency performance, with a
top speed around one million events per second.

4.4 Attacks on AES
In this section we evaluate the performance of
PRIME+ABORT in an actual attack by replicating the at-
tack on OpenSSL’s T-table implementation of AES, as
conducted by Gruss et al. [7]. As those authors ac-
knowledge, this implementation is no longer enabled
by default due to its susceptibility to these kinds of at-
tacks. However, as with their work, we use it for the
purpose of comparing the speed and accuracy of com-
peting attacks. Gruss et al. compared PRIME+PROBE,
FLUSH+RELOAD, and FLUSH+FLUSH [7]; we have

chosen to compare PRIME+PROBE and PRIME+ABORT,
as these attacks do not rely on shared memory. Follow-
ing their methods, rather than using previously published
results directly, we rerun previous attacks alongside ours
to ensure fairness, including the same hardware setup.

Figures 6 and 7 provide the results of this experiment.
In this chosen-plaintext attack, we listen for accesses to
the first cacheline of the first T-Table (Te0) while run-
ning encryptions. We expect that when the first four bits
of our plaintext match the first four bits of the key, the
algorithm will access this cacheline one extra time over
the course of each encryption compared to when the bits
do not match. This will manifest as causing more events
to be detected by PRIME+ABORT or PRIME+PROBE re-
spectively, allowing the attacker to predict the four key
bits. The attack can then be continued for each byte of
plaintext (monitoring a different cacheline of Te0 in each
case) to reveal the top four bits of each key byte.

In our experiments, we used a key whose first four
bits were arbitrarily chosen to be 1110, and for each
method we performed one million encryptions with each
possible 4-bit plaintext prefix (a total of sixteen mil-
lion encryptions for PRIME+ABORT and sixteen mil-
lion for PRIME+PROBE). As shown in Figures 6 and
7, both methods correctly predict the first four key bits
to be 1110, although the signal is arguably cleaner and
stronger when using PRIME+ABORT.

5 Potential Countermeasures
Many countermeasures against side-channel attacks have
already been proposed; Ge et al. [4] again provide an

USENIX Association 26th USENIX Security Symposium 63

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0.0%

5.0%

10.0%

First four bits of plaintext

N
or

m
al

iz
ed

E
ve

nt
s

O
bs

er
ve

d

Figure 6: PRIME+ABORT attack against AES. Shown is,
for each condition, the percentage of additional events
that were observed compared to the condition yielding
the fewest events.

excellent survey. Examining various proposed defenses
in the context of PRIME+ABORT reveals that some are
effective against a wide variety of attacks including
PRIME+ABORT, whereas others are impractical or in-
effective against PRIME+ABORT. This leads us to ad-
vocate for the prioritization and further development of
certain approaches over others.

We first examine classes of side-channel counter-
measures that are impractical or ineffective against
PRIME+ABORT and then move toward countermeasures
which are more effective and practical.
Timer-Based Countermeasures: A broad class of
countermeasures ineffective against PRIME+ABORT are
approaches that seek to limit the availability of precise
timers, either by injecting noise into timers to make them
less precise, or by restricting access to timers in general.
There are a wide variety of proposals in this vein, includ-
ing [15], [27], [31], [39], and various approaches which
Ge et al. classify as “Virtual Time” or “Black-Box Miti-
gation”. PRIME+ABORT should be completely immune
to all timing-related countermeasures.
Partitioning Time: Another class of countermeasures
that seems impractical against PRIME+ABORT is the
class Ge et al. refer to as Partitioning Time. These coun-
termeasures propose some form of “time-sliced exclu-
sive access” to shared hardware resources. This would
technically be effective against PRIME+ABORT, because
the attack is entirely dependent on running simultane-
ously with its victim process; any context switch causes a
transactional abort, so the PRIME+ABORT process must
be active in order to glean any information. However,
since PRIME+ABORT targets the LLC and can monitor

0
0
0
0

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

0.0%

5.0%

10.0%

First four bits of plaintext

N
or

m
al

iz
ed

E
ve

nt
s

O
bs

er
ve

d

Figure 7: PRIME+PROBE attack against AES. Shown is,
for each condition, the percentage of additional events
that were observed compared to the condition yielding
the fewest events.

across cores, implementing this countermeasure against
PRIME+ABORT would require providing each user pro-
cess time-sliced exclusive access to the LLC. This would
mean that processes from different users could never run
simultaneously, even on different cores, which seems im-
practical.
Disabling TSX: A countermeasure which would os-
tensibly target PRIME+ABORT’s workings in particular
would be to disable TSX entirely, similarly to how hy-
perthreading has been disabled entirely in cloud environ-
ments such as Microsoft Azure [30]. While this is tech-
nically feasible—in fact, due to a hardware bug, Intel al-
ready disabled TSX in many Haswell CPUs through a
microcode update [17]—TSX’s growing prevalence (Ta-
ble 2), as well as its adoption by applications such as
glibc (pthreads) and the JVM [24], indicates its im-
portance and usefulness to the community. System ad-
ministrators are probably unlikely to take such a drastic
step.
Auditing: More practical but still not ideal is the class of
countermeasures Ge et al. refer to as Auditing, which is
based on behavioral analysis of running processes. Hard-
ware performance counters in the target systems can be
used to monitor LLC cache misses or miss rates, and thus
detect when a PRIME+PROBE- or FLUSH+RELOAD-
style attack is being conducted [1, 7, 46] (as any at-
tack from those families will introduce a large number
of cache misses—at least in the victim process). As
a PRIME+PROBE-style attack, PRIME+ABORT would
be just as vulnerable to these countermeasures as other
cache attacks are. However, any behavioral auditing
scheme is necessarily imperfect and subject to misclas-

64 26th USENIX Security Symposium USENIX Association

sification errors in both directions. Furthermore, any au-
diting proposal targeting PRIME+ABORT which specifi-
cally monitors TSX-related events, such as transactions
opened or transactions aborted, seems less likely to be
effective, as many benign programs which utilize TSX
generate a large number of both transactions and aborts,
just as PRIME+ABORT does. This makes it difficult to
distinguish PRIME+ABORT from benign TSX programs
based on these statistics.
Constant-Time Techniques: The class of countermea-
sures referred to as “Constant-Time Techniques” in-
cludes a variety of approaches, some of which are likely
to be effective against PRIME+ABORT. These coun-
termeasures are generally software techniques to en-
sure important invariants are preserved in program ex-
ecution regardless of (secret) input data, with the aim
of mitigating side channels of various types. Some
“Constant-Time Techniques” merely ensure that critical
functions in a program always execute in constant time
regardless of secret data. This is insufficient to defend
against PRIME+ABORT, as PRIME+ABORT can track
cache accesses without relying on any kind of timing
side-channel. However, other so-called “Constant-Time
Techniques” are actually more powerful than their name
suggests, and ensure that no data access or control-flow
decision made by the program ever depends on any secret
data. This approach is effective against PRIME+ABORT,
as monitoring cache accesses (either for instructions or
data) would not reveal anything about the secret data be-
ing processed by the program.
Randomizing Hardware Operations: Another inter-
esting class of defenses proposes to insert noise into
hardware operations so that side-channel measurements
are more difficult. Although PRIME+ABORT is immune
to such efforts related to timers, other proposals aim
to inject noise into other side-channel vectors, such as
cache accesses. For instance, RPcache [40] proposes
to randomize the mapping between memory address and
cache set, which would render PRIME+ABORT and other
cache attacks much more difficult. Other proposals aim
to, for instance, randomize the cache replacement pol-
icy. Important limitations of this kind of noise injec-
tion (noted by Ge et al.) include that it generally can
only make side-channel attacks more difficult or less effi-
cient (not completely impossible), and that higher levels
of mitigation generally come with higher performance
costs. However, these kinds of schemes seem to be
promising, providing relatively lightweight countermea-
sures against a quite general class of side-channel at-
tacks.
Cache Set Partitioning: Finally, a very promising class
of countermeasures proposes to partition cache sets be-
tween processes, or disallow a single process to use all
of the ways in any given LLC cache set. This would

be a powerful defense against PRIME+ABORT or any
other PRIME+PROBE variant. Some progress has been
made towards implementing these defenses, such as
CATalyst [28], which utilizes Intel’s “Cache Allocation
Technology” [18]; or “cache coloring” schemes such as
STEALTHMEM [26] or that proposed by [5]. One unde-
sirable side effect of this approach is that it would reduce
the maximum size of TSX transactions, hindering legit-
imate users of the hardware transactional memory func-
tionality. However, the technique is still promising as an
effective defense against a wide variety of cache attacks.
For more examples and details of this and other classes of
side-channel countermeasures, we again refer the reader
to Ge et al. [4].

Our work with PRIME+ABORT leads us to recom-
mend the further pursuit of those classes of countermea-
sures which are effective against all kinds of cache at-
tacks including PRIME+ABORT, specifically so-called
“Constant-Time Techniques” (in their strict form), ran-
domizing cache operations, or providing mechanisms for
partitioning cache sets between processes.

6 Disclosure
We disclosed this vulnerability to Intel on January 30,
2017, explaining the basic substance of the vulnerability
and offering more details. We also indicated our intent
to submit our research on the vulnerability to USENIX
Security 2017 in order to ensure Intel was alerted before
it became public. We did not receive a response.

7 Conclusion
PRIME+ABORT leverages Intel TSX primitives to yield
a high-precision, cross-core cache attack which does not
rely on timers, negating several important classes of de-
fenses. We have shown that leveraging TSX improves
the efficiency of algorithms for dynamically generating
eviction sets; that PRIME+ABORT has higher accuracy
and speed on Intel’s Skylake architecture than previous
L3 PRIME+PROBE attacks while producing fewer false
positives; and that PRIME+ABORT can be successfully
employed to recover secret keys from a T-table imple-
mentation of AES. Additionally, we presented new evi-
dence useful for all cache attacks regarding Intel’s Sky-
lake architecture: that it may differ from previous archi-
tectures in number of cache slices, and that it may use
different cache replacement policies for lines involved in
TSX transactions.

8 Acknowledgments

We thank our anonymous reviewers for their helpful ad-
vice and comments. We also especially thank Yuval

USENIX Association 26th USENIX Security Symposium 65

Yarom for his assistance in improving the quality of this
work.

This material is based in part upon work supported by
the National Science Foundation. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Founda-
tion.

References
[1] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Real time de-

tection of cache-based side-channel attacks using hardware per-
formance counters. Applied Soft Computing 49 (2016), 1162–
1174.

[2] DENNING, P. J. Virtual memory. ACM Computing Surveys
(CSUR) 2, 3 (1970), 153–189.

[3] DICE, D., HARRIS, T., KOGAN, A., AND LEV, Y. The influ-
ence of malloc placement on TSX hardware transactional mem-
ory, 2015. https://arxiv.org/pdf/1504.04640.pdf.

[4] GE, Q., YAROM, Y., COCK, D., AND HEISER, G. A sur-
vey of microarchitectural timing attacks and countermeasures on
contemporary hardware. Journal of Cryptographic Engineering
(2016).

[5] GODFREY, M. On the prevention of cache-based side-channel
attacks in a cloud environment. Master’s thesis, Queen’s Univer-
sity, 2013.

[6] GOOGLE. Google Chrome Native Client SDK release notes.
https://developer.chrome.com/native-client/sdk/release-notes.

[7] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: a fast and stealthy cache attack. In Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA),
Proceedings of the 13th Conference on (2016).

[8] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: automating attacks on inclusive last-level caches.
In Proceedings of the 24th USENIX Security Symposium (2015).

[9] GUAN, L., LIN, J., LUO, B., JING, J., AND WANG, J. Protect-
ing private keys against memory disclosure attacks using hard-
ware transactional memory. In Security and Privacy (SP), 2015
IEEE Symposium on (2015).

[10] GUANCIALE, R., NEMATI, H., BAUMANN, C., AND DAM, M.
Cache storage channels: alias-driven attacks and verified counter-
measures. In Security and Privacy (SP), 2016 IEEE Symposium
on (2016).

[11] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
games - bringing access-based cache attacks on AES to practice.
In Security and Privacy (SP), 2011 IEEE Symposium on (2011).

[12] HAMMARLUND, P., MARTINEZ, A. J., BAJWA, A. A., HILL,
D. L., HALLNOR, E., JIANG, H., DIXON, M., DERR, M.,
HUNSAKER, M., KUMAR, R., ET AL. Haswell: The fourth-
generation intel core processor. IEEE Micro 34, 2 (2014), 6–20.

[13] HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B. D.,
DAVIS, J. D., HERTZBERG, B., PRABHU, M. K., WIJAYA, H.,
KOZYRAKIS, C., AND OLUKOTUN, K. Transactional memory
coherence and consistency. In ACM SIGARCH Computer Archi-
tecture News (2004), vol. 32, IEEE Computer Society, p. 102.

[14] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
Architectural support for lock-free data structures, vol. 21. ACM,
1993.

[15] HU, W.-M. Reducing timing channels with fuzzy time. Journal
of Computer Security 1, 3-4 (1992), 233–254.

[16] İNCI, M. S., GULMEZOGLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Cache attacks enable bulk key recovery
on the cloud. In Cryptographic Hardware and Embedded Sys-
tems (CHES), Proceedings of the 18th International Conference
on (2016).

[17] INTEL. Desktop 4th generation Intel Core processor family, desk-
top Intel Pentium processor family, and desktop Intel Celeron
processor family: specification update. Revision 036US, page
67.

[18] INTEL. Improving real-time performance by utilizing Cache Al-
location Technology. Tech. rep., Intel Corporation, 2015.

[19] INTEL. Intel 64 and IA-32 architectures software developer’s
manual. September 2016.

[20] INTEL. ARK — your source for Intel product specifications, Jan
2017. https://ark.intel.com.

[21] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: a
shared cache attack that works across cores and defies VM sand-
boxing - and its application to AES. In Security and Privacy (SP),
2015 IEEE Symposium on (2015).

[22] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. Systematic
reverse engineering of cache slice selection in Intel processors.
In Digital System Design (DSD), 2015 Euromicro Conference on
(2015).

[23] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Lucky 13 strikes back. In Information, Computer, and Commu-
nications Security, Proceedings of the 10th ACM Symposium on
(2015).

[24] JANG, Y., LEE, S., AND KIM, T. Breaking kernel address space
layout randomization with Intel TSX. In Computer and Com-
muncications Security, Proceedings of the 23rd ACM Conference
on (2016).

[25] KAYAALP, M., ABU-GHAZALEH, N., PONOMAREV, D., AND
JALEEL, A. A high-resolution side-channel attack on last-level
cache. In Design Automation Conference (DAC), Proceedings of
the 53rd (2016).

[26] KIM, T., PEINADO, M., AND MAINAR-RUIZ, G. STEALTH-
MEM: system-level protection against cache-based side channel
attacks in the cloud. In Proceedings of the 21st USENIX Security
Symposium (2012).

[27] KOHLBRENNER, D., AND SHACHAM, H. Trusted browsers for
uncertain times. In Proceedings of the 25th USENIX Security
Symposium (2016).

[28] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C.,
HEISER, G., AND LEE, R. B. CATalyst: Defeating last-
level cache side channel attacks in cloud computing. In High-
Performance Computer Architecture (HPCA), IEEE Symposium
on (2016).

[29] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In Security
and Privacy (SP), 2015 IEEE Symposium on (2015).

[30] MARSHALL, A., HOWARD, M., BUGHER, G., AND HARDEN,
B. Security best practices for developing Windows Azure appli-
cations. Tech. rep., Microsoft Corp., 2010.

[31] MARTIN, R., DEMME, J., AND SETHUMADHAVAN, S. Time-
Warp: rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks. In International
Symposium on Computer Architecture (ISCA), Proceedings of the
39th Annual (2012).

[32] MAURICE, C., LE SCOUARNEC, N., NEUMANN, C., HEEN,
O., AND FRANCILLON, A. Reverse engineering Intel last-level
cache complex addressing using performance counters. In Re-
search in Attacks, Intrusions, and Defenses (RAID), Proceedings
of the 18th Symposium on (2015).

66 26th USENIX Security Symposium USENIX Association

[33] OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The spy in the sandbox: practical cache
attacks in javascript and their implications. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (2015).

[34] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: the case of AES. In Proceedings of the
2006 Cryptographers’ Track at the RSA Conference on Topics in
Cryptology (2006).

[35] PERCIVAL, C. Cache missing for fun and profit. In BSDCan
2005 (2005).

[36] RAJWAR, R., AND GOODMAN, J. R. Transactional lock-free
execution of lock-based programs. In Proceedings of the 10th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2002).

[37] SHAVIT, N., AND TOUITOU, D. Software transactional memory.
Distributed Computing 10, 2 (1997), 99–116.

[38] TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. Simulta-
neous multithreading: Maximizing on-chip parallelism. In ACM
SIGARCH Computer Architecture News (1995), vol. 23, ACM,
pp. 392–403.

[39] VATTIKONDA, B. C., DAS, S., AND SHACHAM, H. Eliminating
fine-grained timers in Xen. In Cloud Computing Security Work-
shop (CCSW), Proceedings of the 3rd ACM (2011).

[40] WANG, Z., AND LEE, R. B. New cache designs for thwart-
ing software cache-based side channel attacks. In International
Symposium on Computer Architecture (ISCA), Proceedings of the
34th (2007).

[41] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using restricted
transactional memory to build a scalable in-memory database. In
European Conference on Computer Systems (EuroSys), Proceed-
ings of the Ninth (2014).

[42] YAROM, Y. Mastik: a micro-architectural side-channel toolkit.
http://cs.adelaide.edu.au/˜yval/Mastik. Ver-
sion 0.02.

[43] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: a high-
resolution, low-noise, L3 cache side-channel attack. In Proceed-
ings of the 23rd USENIX Security Symposium (2014).

[44] YAROM, Y., GE, Q., LIU, F., LEE, R. B., AND HEISER, G.
Mapping the Intel last-level cache, 2015. http://eprint.iacr.org.

[45] YEN, L., BOBBA, J., MARTY, M. R., MOORE, K. E., VOLOS,
H., HILL, M. D., SWIFT, M. M., AND WOOD, D. A. Logtm-se:
Decoupling hardware transactional memory from caches. In High
Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on (2007), IEEE, pp. 261–272.

[46] ZHANG, T., ZHANG, Y., AND LEE, R. B. Cloudradar: a real-
time side-channel attack detection system in clouds. In Research
in Attacks, Intrusions, and Defenses (RAID), Proceedings of the
19th Symposium on (2016).

USENIX Association 26th USENIX Security Symposium 67

