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Abstract. Modern operating system kernels employ address space lay-
out randomization (ASLR) to prevent control-flow hijacking attacks and
code-injection attacks. While kernel security relies fundamentally on pre-
venting access to address information, recent attacks have shown that the
hardware directly leaks this information. Strictly splitting kernel space
and user space has recently been proposed as a theoretical concept to
close these side channels. However, this is not trivially possible due to
architectural restrictions of the x86 platform.
In this paper we present KAISER, a system that overcomes limitations
of x86 and provides practical kernel address isolation. We implemented
our proof-of-concept on top of the Linux kernel, closing all hardware
side channels on kernel address information. KAISER enforces a strict
kernel and user space isolation such that the hardware does not hold
any information about kernel addresses while running in user mode. We
show that KAISER protects against double page fault attacks, prefetch
side-channel attacks, and TSX-based side-channel attacks. Finally, we
demonstrate that KAISER has a runtime overhead of only 0.28%.

1 Introduction

Like user programs, kernel code contains software bugs which can be exploited
to undermine the system security. Modern operating systems use hardware fea-
tures to make the exploitation of kernel bugs more difficult. These protection
mechanisms include making code non-writable and data non-executable. More-
over, accesses from kernel space to user space require additional indirection and
cannot be performed through user space pointers directly anymore (SMAP/S-
MEP). However, kernel bugs can be exploited within the kernel boundaries. To
make these attacks harder, address space layout randomization (ASLR) can be
used to make some kernel addresses or even all kernel addresses unpredictable for
an attacker. Consequently, powerful attacks relying on the knowledge of virtual
addresses, such as return-oriented-programming (ROP) attacks, become infeasi-
ble [14,17,19]. It is crucial for kernel ASLR to withhold any address information
from user space programs. In order to eliminate address information leakage,
the virtual-to-physical address information has been made unavailable to user
programs [13].

Knowledge of virtual or physical address information can be exploited to
bypass KASLR [7, 22], bypass SMEP and SMAP [11], perform side-channel at-
tacks [6,15,18], Rowhammer attacks [5,12,20], and to attack system memory en-
cryption [2]. To prevent attacks, system interfaces leaking the virtual-to-physical
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mapping have recently been fixed [13]. However, hardware side channels might
not easily be fixed without changing the hardware. Specifically side-channel at-
tacks targeting the page translation caches provide information about virtual
and physical addresses to the user space. Hund et al. [7] described an attack
exploiting double page faults, Gruss et al. [6] described an attack exploiting
software prefetch instructions,1 and Jang et al. [10] described an attack exploit-
ing Intel TSX (hardware transactional memory). These attacks show that cur-
rent KASLR implementations have fatal flaws, subsequently KASLR has been
proclaimed dead by many researchers [3, 6, 10].

Gruss et al. [6] and Jang et al. [10] proposed to unmap the kernel address
space in the user space and vice versa. However, this is non-trivial on modern
x86 hardware. First, modifying page table structures on context switches is not
possible due to the highly parallelized nature of today’s multi-core systems, e.g.,
simply unmapping the kernel would inhibit parallel execution of multiple sys-
tem calls. Second, x86 requires several locations to be valid for both user space
and kernel space during context switches, which are hard to identify in large
operating systems. Third, switching or modifying address spaces incurs transla-
tion lookaside buffer (TLB) flushes [8]. Jang et al. [10] suspected that switching
address spaces may have a severe performance impact, making it impractical.

In this paper, we present KAISER, a highly-efficient practical system for ker-
nel address isolation, implemented on top of a regular Ubuntu Linux. KAISER
uses a shadow address space paging structure to separate kernel space and user
space. The lower half of the shadow address space is synchronized between both
paging structures. Thus, multiple threads work in parallel on the two address
spaces if they are in user space or kernel space respectively. KAISER eliminates
the usage of global bits in order to avoid explicit TLB flushes upon context
switches. Furthermore, it exploits optimizations in current hardware that al-
low switching address spaces without performing a full TLB flush. Hence, the
performance impact of KAISER is only 0.28%.

KAISER reduces the number of overlapping pages between user and kernel
address space to the absolute minimum required to run on modern x86 systems.
We evaluate all microarchitectural side-channel attacks on kernel address infor-
mation that are applicable to recent Intel architectures. We show that KAISER
successfully eliminates the leakage in all cases.

Contributions. The contributions of this work are:

1. KAISER is the first practical system for kernel address isolation. It in-
troduces shadow address spaces to utilize modern CPU features efficiently
avoiding frequent TLB flushes. We show how all challenges to make kernel
address isolation practical can be overcome.

1 The list of authors for “Prefetch Side-Channel Attacks” by Gruss et al. [6] and this
paper overlaps.
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2. Our open-source proof-of-concept implementation in the Linux kernel shows
that KAISER can easily be deployed on commodity systems, i.e., a full-
fledged Ubuntu Linux system.2

3. After KASLR has already been considered dead by many researchers, KAISER
fully restores the former efficacy of KASLR with a runtime overhead of only
0.28%.

Outline. The remainder of the paper is organized as follows. In Section 2, we
provide background on kernel protection mechanisms and side-channel attacks.
In Section 3, we describe the design and implementation of KAISER. In Sec-
tion 4, we evaluate the efficacy of KAISER and its performance impact. In
Section 5, we discuss future work. We conclude in Section 6.

2 Background

2.1 Virtual Address Space

Virtual addressing is the foundation of memory isolation between different pro-
cesses as well as processes and the kernel. Virtual addresses are translated to
physical addresses through a multi-level translation table stored in physical mem-
ory. A CPU register holds the physical address of the active top-level translation
table. Upon a context switch, the register is updated to the physical address
of the top-level translation table of the next process. Consequently, processes
cannot access all physical memory but only the memory that is mapped to vir-
tual addresses. Furthermore, the translation tables entries define properties of
the corresponding virtual memory region, e.g., read-only, user-accessible, non-
executable.

On modern Intel x86-64 processors, the top-level translation table is the page
map level 4 (PML4). Its physical address is stored in the CR3 register of the CPU.
The PML4 divides the 48-bit virtual address space into 512 PML4 entries, each
covering a memory region of 512 GB. Each subsequent level sub-divides one block
of the upper layer into 512 smaller regions until 4 kB pages are mapped using
page tables (PTs) on the last level. The CPU has multiple levels of caches for
address translation table entries, the so-called TLBs. They speed up address
translation and privilege checks. The kernel address space is typically a defined
region in the virtual address space, e.g., the upper half of the address space.

Similar translation tables exist on modern ARM (Cortex-A) processors too,
with small differences in size and property bits. One significant difference to
x86-64 is that ARM CPUs have two registers to store physical addresses of
translation tables (TTBR0 and TTBR1). Typically, one is used to map the user
address space (lower half) whereas the other is used to map the kernel address
space (upper half). Gruss et al. [6] speculated that this might be one of the
reasons why the attack does not work on ARM processors. As x86-64 has only

2 We are preparing a submission of our patches into the Linux kernel upstream. The
source code and the Debian package compatible with Ubuntu 16.10 can be found at
https://github.com/IAIK/KAISER.
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Fig. 1: Address translation caches are used to speed up address translation table
lookups.

one translation-table register (CR3), it is used for both user and kernel address
space. Consequently, to perform privilege checks upon a memory access, the
actual page translation tables have to be checked.

Control-Flow Attacks. Modern Intel processors protect against code injec-
tion attacks through non-executable bits. Furthermore, code execution and data
accesses on user space memory are prevented in kernel mode by the CPU fea-
tures supervisor-mode access prevention (SMAP) and supervisor-mode execution
prevention (SMEP). However, it is still possible to exploit bugs by redirecting
the code execution to existing code. Solar Designer [23] showed that a non-
executable stack in user programs can be circumvented by jumping to existing
functions within libc. Kemerlis et al. [11] presented the ret2dir attack which
redirects a hijacked control flow in the kernel to arbitrary locations using the
kernel physical direct mapping. Return-oriented programming (ROP) [21] is a
generalization of such attacks. In ROP attacks, multiple code fragments—so-
called gadgets—are chained together to build an exploit. Gadgets are not entire
functions, but typically consist of one or more useful instructions followed by a
return instruction.

To mitigate control-flow-hijacking attacks, modern operating systems ran-
domize the virtual address space. Address space layout randomization (ASLR)
ensures that every process has a new randomized virtual address space, prevent-
ing an attacker from knowing or guessing addresses. Similarly, the kernel has
a randomized virtual address space every time it is booted. As Kernel ASLR
makes addresses unpredictable, it protects against ROP attacks.

2.2 CPU Caches

Caches are small memory buffers inside the CPU, storing frequently used data.
Modern Intel CPUs have multiple levels of set-associative caches. The last-level
cache (LLC) is shared among all cores. Executing code or accessing data on one
core has immediate consequences for all other cores.

Address translation tables are stored in physical memory. They are cached
in regular data caches [8] but also in special caches such as the translation
lookaside buffers. Figure 1 illustrates how the address translation caches are
used for address resolution.
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2.3 Microarchitectural Attacks on Kernel Address Information

Until recently, Linux provided information on virtual and physical addresses
to any unprivileged user program through operating system interfaces. As this
information facilitates mounting microarchitectural attacks, the interfaces are
now restricted [13]. However, due to the way the processor works, side channels
through address translation caches [4, 6, 7, 10] and the branch-target buffer [3]
leak parts of this information.

Address Translation Caches. Hund et al. [7] described a double page fault
attack, where an unprivileged attacker tries to access an inaccessible kernel mem-
ory location, triggering a page fault. After the page fault interrupt is handled
by the operating system, the control is handed back to an error handler in the
user program. The attacker measures the execution time of the page fault inter-
rupt. If the memory location is valid, regardless of whether it is accessible or not,
address translation table entries are copied into the corresponding address trans-
lation caches. The attacker then tries to access the same inaccessible memory
location again. If the memory location is valid, the address translation is already
cached and the page fault interrupt will take less time. Thus, the attacker learns
whether a memory location is valid or not, even if it is not accessible from the
user space.

Jang et al. [10] exploited the same effect in combination with Intel TSX. Intel
TSX is an extension to the x86 instruction set providing a hardware transactional
memory implementation via so-called TSX transactions. If a page fault occurs
within a TSX transaction, the transaction is aborted without any operating
system interaction. Thus, the entire page fault handling of the operation system
is skipped, and the timing differences are significantly less noisy. In this attack,
the attacker again learns whether a memory location is valid, even if it is not
accessible from the user space.

Gruss et al. [6] exploited software prefetch instructions to trigger address
translation. The execution time of the prefetch instruction depends on which
address translation caches hold the right translation entries. Thus, in addition
to learning whether an inaccessible address is valid or not, an attacker learns its
corresponding page size as well. Furthermore, software prefetches can succeed
even on inaccessible memory. Linux has a kernel physical direct map, providing
direct access to all physical memory. If the attacker prefetches an inaccessible
address in this kernel physical direct map corresponding to a user-accessible
address, it will also be cached when accessed through the user address. Thus,
the attacker can retrieve the exact physical address for any virtual address.

All three attacks have in common that they exploit that the kernel address
space is mapped in user space as well, and that accesses are only prevented
through the permission bits in the address translation tables. Thus, they use
the same entries in the paging structure caches. On ARM architectures, the user
and kernel addresses are already distinguished based on registers, and thus no
cache access and no timing difference occurs. Gruss et al. [6] and Jang et al. [10]
proposed to unmap the entire kernel space to emulate the same behavior as on
the ARM architecture.
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Branch-Target Buffer. Evtyushkin et al. [3] presented an attack on the branch-
target buffer (BTB) to recover the lowest 30 bits of a randomized kernel address.
The BTB is indexed based on the lowest 30 bits of the virtual address. Similar
as in a regular cache attack, the adversary occupies parts of the BTB by execut-
ing a sequence of branch instructions. If the kernel uses virtual addresses with
the same value for the lowest 30 bits as the attacker, the sequence of branch
instructions requires more time. Through targeted execution of system calls,
the adversary can obtain information about virtual addresses of code that is
executed during a system call. Consequently, the BTB attack defeats KASLR.

We consider the BTB attack out of scope for our countermeasure (KAISER),
which we present in the next section, for two reasons. First, Evtyushkin et al. [3]
proposed to use virtual address bits > 30 to randomize memory locations for
KASLR as a zero-overhead countermeasure against their BTB attack. Indeed,
an adaption of the corresponding range definitions in modern operating system
kernels would effectively mitigate the attack. Second, the BTB attack relies on
a profound knowledge of the behavior of the BTB. The BTB attack currently
does not work on recent architectures like Intel Skylake, as the BTB has not
been reverse-engineered yet. Consequently, we also were not able to reproduce
the attack in our test environment (Intel Skylake i7-6700K).

3 Design and Implementation of KAISER

In this section, we describe the design and implementation of KAISER3. We
discuss the challenges of implementing kernel address isolation. We show how
shadow address space paging structures can be used to separate kernel space
and user space. We describe how modern CPU features and optimizations can
be used to reduce the amount of regular TLB flushes to a minimum. Finally,
to show the feasibility of the approach, we implemented KAISER on top of the
latest Ubuntu Linux kernel.

3.1 Challenges of Kernel Address Isolation

As recommended by Intel [8], today’s operating systems map the kernel into the
address space of every user process. Kernel pages are protected from unwanted
access by user space applications using different access permissions, set in the
page table entries (PTE). Thus, the address space is shared between the kernel
and the user and only the privilege level is escalated to execute system calls and
interrupt routines.

The idea of Stronger Kernel Isolation proposed by Gruss et al. [6] (cf. Fig-
ure 2) is to unmap kernel pages while the user process is in user space and
switch to a separated kernel address space when entering the kernel. Conse-
quently, user pages are not mapped in kernel space and only a minimal numbers
of pages is mapped both in user space and kernel space. While this would prevent

3 Kernel Address Isolation to have Side channels Efficiently Removed.
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Fig. 2: (a) The kernel is mapped into the address space of every user process.
(b) Theoretical concept of stronger kernel isolation. It splits the address spaces
and only interrupt handling code is mapped in both address spaces. (c) For
compatibility with x86 Linux, KAISER relies on SMAP to prevent invalid user
memory references and SMEP to prevent execution of user code in kernel mode.

all microarchitectural attacks on kernel address space information on recent sys-
tems [6,7,10], it is not possible to implement Stronger Kernel Isolation without
rewriting large parts of today’s kernels. There is no previous work investigating
the requirements real hardware poses to implement kernel address isolation in
practice. We identified the following three challenges that make kernel address
isolation non-trivial to implement.

Challenge 1. Threads cannot use the same page table structures in user space
and kernel space without a huge synchronization overhead. The reason for this
is the highly parallelized nature of today’s systems. If a thread modifies page
table structures upon a context switch, it influences all concurrent threads of the
same process. Furthermore, the mapping changes for all threads, even if they are
currently in the user space.

Challenge 2. Current x86 processors require several locations to be valid for
both user space and kernel space during context switches. These locations are
hard to identify in large operating system kernels due to implicit assumptions
about the omnipresence of the entire kernel address space. Furthermore, seg-
mented memory accesses like core-local storage are required during context
switches. Thus, it must be possible to locate and restore the segmented areas
without re-mapping the unmapped parts of the kernel space. Especially, unmap-
ping the user space in the Linux kernel space, as proposed by Gruss et al. [6],
would require rewriting large parts of the Linux kernel.

Challenge 3. Switching the address space incurs an implicit full TLB flush and
modifying the address space causes a partial TLB flush [8]. As current operating
systems are highly optimized to reduce the amount of implicit TLB flushes,
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a countermeasure would need to explicitly flush the TLB upon every context
switch. Jang et al. [10] suspected that this may have a severe performance impact.

3.2 Practical Kernel Address Isolation

In this section we show how KAISER overcomes these challenges and thus fully
revives KASLR.

Shadow Address Spaces. To solve challenge 1, we introduce the idea of shadow
address spaces to provide kernel address isolation. Figure 3 illustrates the princi-
ple of the shadow address space technique. Every process has two address spaces.
One address space which has the user space mapped but not the kernel (i.e., the
shadow address space), and a second address space which has the kernel mapped
but the user space protected with SMAP and SMEP.

The switch between the user address space and the kernel address space now
requires updating the CR3 register with the value of the corresponding PML4.
Upon a context switch, the CR3 register initially remains at the old value, map-
ping the user address space. At this point KAISER can only perform a very
limited amount of computations, operating on a minimal set of registers and
accessing only parts of the kernel that are mapped both in kernel and user
space. As interrupts can be triggered from both user and kernel space, interrupt
sources can be both environments and it is not generally possible to determine
the interrupt source within the limited amount of computations we can perform
at this point. Consequently, switching the CR3 register must be a short static
computation oblivious to the interrupt source.

With shadow address spaces we provide a solution to this problem. Shadow
address spaces are required to have a globally fixed power-of-two offset between
the kernel PML4 and the shadow PML4. This allows switching to the kernel
PML4 or the shadow PML4 respectively, regardless of the interrupt source. For
instance, setting the corresponding address bit to zero switches to the kernel
PML4 and setting it to one switches to the shadow PML4. The easiest offset
to implement is to use bit 12 of the physical address. That is, the PML4 for
the kernel space and shadow PML4 are allocated as an 8 kB-aligned physical
memory block. The shadow PML4 is always located at the offset +4 kB. With
this trick, we do not need to perform any memory lookups and only need a single
scratch register to switch address spaces.

The memory overhead introduced through shadow address spaces is very
small. We have an overhead of 8 kB of physical memory per user thread for
kernel page directorys (PDs) and PTs and 12 kB of physical memory per user
process for the shadow PML4. The 12 kB are due to a restriction in the Linux
kernel that only allows to allocate blocks containing 2n pages. Additionally,
KAISER has a system-wide total overhead of 1 MB to allocate 256 global kernel
page directory pointer tables (PDPTs) that are mapped in the kernel region of
the shadow address spaces.

Minimizing the Kernel Address Space Mapping. To solve challenge 2,
we identified the memory regions that need to be mapped for both user space
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Fig. 3: Shadow address space: PML4 of user address space and kernel address
space are placed next to each other in physical memory. This allows to switch
between both mappings by applying a bit mask to the CR3 register.

and kernel space, i.e., the absolute minimum number of pages to be compatible
with x86 and its features used in the Linux kernel. While previous work [6]
suggested that only a negligible portion of the interrupt dispatcher code needs
to be mapped in both address spaces, in practice more locations are required.

As x86 and Linux are built around using interrupts for context switches, it is
necessary to map the interrupt descriptor table (IDT), as well as the interrupt
entry and exit .text section. To enable multi-threaded applications to run on
different cores, it is necessary to identify per-CPU memory regions and map
them into the shadow address space. KAISER maps the entire per-CPU section
including the interrupt request (IRQ) stack and vector, the global descriptor
table (GDT), and the task state segment (TSS). Furthermore, while switching
to privileged mode, the CPU implicitly pushes some registers onto the current
kernel stack. This can be one of the per-CPU stacks that we already mapped or
a thread stack. Consequently, thread stacks need to be mapped too.

We found that the idea to unmap the user space entirely in kernel space
is not practical. The design of modern operating system kernels is based upon
the capability of accessing user space addresses from kernel mode. Furthermore,
SMEP protects against executing user space code in kernel mode. Any memory
location that is user-accessible cannot be executed by the kernel. SMAP pro-
tects against invalid user memory references in kernel mode. Consequently, the
effective user memory mapping is non-executable and not directly accessible in
kernel mode.

Efficient and Secure TLB Management. The Linux kernel generally tries
to minimize the number of implicit TLB flushes. For instance when switching
between kernel and user mode, the CR3 register is not updated. Furthermore,
the Linux kernel uses PTE global bits to preserve mappings that exist in every
process to improve the performance of context switches. The global bit of a PTE
marks pages to be excluded from implicit TLB flushes. Thus, they reduce the
impact of implicit TLB flushes when modifying the CR3 register.
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To solve challenge 3, we investigate the effects of these global bits. We found
that it is necessary to either perform an explicit full TLB flush, or disable the
global bits to eliminate the leakage completely. Surprisingly, we found the per-
formance impact of disabling global bits to be entirely negligible.

Disabling global bits alone does not eliminate any leakage, but it is a neces-
sary building block. The main side-channel defense in KAISER is based on the
separate shadow address spaces we described above. As the two address spaces
have different CR3 register values, KAISER requires a CR3 update upon every
context switch. The defined behavior of current Intel x86 processors is to perform
implicit TLB flushes upon every CR3 update. Venkatasubramanian et al. [25]
described that beyond this architecturally defined behavior, the CPU may im-
plement further optimizations as long as the observed effect does not change.
They discussed an optimized implementation which tags the TLB entries with
the CR3 register to avoid frequent TLB flushes due to switches between processes
or between user mode and kernel mode. As we show in the following section, our
evaluation suggests that current Intel x86 processors have such optimizations
already implemented. KAISER benefits from these optimizations implicitly and
consequently, its TLB management is efficient.

4 Evaluation

We evaluate and discuss the efficacy and performance of KAISER on a desk-
top computer with an Intel Core i7-6700K Skylake CPU and 16GB RAM. To
evaluate the effectiveness of KAISER, we perform all three microarchitectural
attacks applicable to Skylake CPUs (cf. Section 2). We perform each attack with
and without KAISER enabled and show that KAISER can mitigate all of them.
For the performance evaluation, we compare various benchmark suites with and
without KAISER and observe a negligible performance overhead of only 0.08 %
to 0.68 %.

4.1 Evaluation of Microarchitectural Attacks

Double Page Fault Attack. As described in Section 2, the double page fault
attack by Hund et al. [7] exploits the fact that the page translation caches store
information to valid kernel addresses, resulting in timing differences. As KAISER
does not map the kernel address space, kernel addresses are never valid in user
space and thus, are never cached in user mode. Figure 4 shows the average
execution time of the second page fault. For the default kernel, the execution
time of the second page fault is 12 282 cycles for a mapped address and 12 307
cycles for an unmapped address. When running the kernel with KAISER, the
access time is 14 621 in both cases. Thus, the leakage is successfully eliminated.

Note that the observed overhead for the page fault execution does not reflect
the actual performance penalty of KAISER. The page faults triggered for this
attack are never valid and thus can never result in a valid page mapping. They
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Fig. 4: Double page fault attack with and without KAISER: mapped and un-
mapped pages cannot be distinguished if KAISER is in place.

are commonly referred to as segmentation faults, typically terminating the user
program.

Intel TSX-based Attack. The Intel TSX-based attack presented by Jang et al.
[10] (cf. Section 2) exploits the same timing difference as the double page fault
attack. However, with Intel TSX the page fault handler is not invoked, resulting
in a significantly faster and more stable attack. As the basic underlying principle
is equivalent to the double page fault attack, KAISER successfully prevents
this attack as well. Figure 5 shows the execution time of a TSX transaction
for unmapped pages, non-executable mapped pages, and executable mapped
pages. With the default kernel, the transaction execution time is 299 cycles for
unmapped pages, 270 cycles for non-executable mapped pages, and 226 cycles
for executable mapped pages. With KAISER, we measure a constant timing of
300 cycles. As in the double page fault attack, KAISER successfully eliminates
the timing side channel.

We also verified this result by running the attack demo by Jang et al. [9].
On the default kernel, the attack recovers page mappings with a 100 % accu-
racy. With KAISER, the attack does not even detect a single mapped page and
consequently no modules.

Prefetch Side-Channel Attack. As described in Section 2, prefetch side-
channel attacks exploit timing differences in software prefetch instructions to
obtain address information. We evaluate the efficacy of KAISER against the
two prefetch side-channel attacks presented by Gruss et al. [6].

Figure 6 shows the median execution time of the prefetch instruction in
cycles compared to the actual address translation level. We observed an execution
time of 241 cycles on our test system for page translations terminating at PDPT
level and PD level respectively. We observed an execution time of 237 cycles
when the page translation terminates at the PT level. Finally, we observed a
distinct execution times of 212 when the page is present and cached, and 515
when the page is present but not cached. As in the previous attack, KAISER
successfully eliminates any timing differences. The measured execution time is
241 cycles in all cases.
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leaks information on the translation level. With KAISER, the execution time is
identical and thus does not leak any information.

Figure 7 shows the address-translation attack. While the correct guess can
clearly be detected without the countermeasure (dotted line), KAISER elim-
inates the timing difference. Thus, the attacker is not able to determine the
correct virtual-to-physical translation anymore.

4.2 Performance Evaluation

As described in Section 3.2, KAISER has a low memory overhead of 8 kB per
user thread, 12 kB per user process, and a system-wide total overhead of 1 MB. A
full-blown Ubuntu Linux already consumes several hundred megabytes of mem-
ory. Hence, in our evaluation the memory overhead introduced by KAISER was
hardly observable.

In order to evaluate the runtime performance impact of KAISER, we execute
different benchmarks with and without the countermeasure. We use the PARSEC
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KAISER-protected kernel. The default kernel serves as baseline (=100%). We
see that the average overhead is 0.28% and the maximum overhead is 0.68%.

3.0 [1] (input set “native”), the pgbench [24] and the SPLASH-2x [16] (input set
“native”) benchmark suites to exhaustively measure the performance overhead
of KAISER in various different scenarios.

The results of the different benchmarks are summarized in Figure 8 and
Table 1. We observed a very small average overhead of 0.28% for all benchmark
suites and a maximum overhead of 0.68% for single tests. This surprisingly low
performance overhead underlines that KAISER should be deployed in practice.

4.3 Reproducibility of Results

In order to make our evaluation of efficacy and performance of KAISER eas-
ily reproducible, we provide the source code and precompiled Debian pack-
ages compatible with Ubuntu 16.10 on GitHub. The repository can be found
at https://github.com/IAIK/KAISER. We fully document how to build the
Ubuntu Linux kernel with KAISER protections from the source code and how
to obtain the benchmark suites we used in this evaluation.
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Table 1: Average performance overhead of KAISER.

Benchmark Kernel Runtime
Average

Overhead

1 core 2 cores 4 cores 8 cores

PARSEC 3.0
default 27:56,0 s 14:56,3 s 8:35,6 s 7:05,1 s

0.37%
KAISER 28:00,2 s 14:58,9 s 8:36,9 s 7:08,0 s

pgbench
default 3:22,3 s 3:21,9 s 3:21,7 s 3:53,5 s

0.39%
KAISER 3:23,4 s 3:22,5 s 3:22,3 s 3:54,7 s

SPLASH-2X
default 17:38,4 s 10:47,7 s 7:10,4 s 6:05,3 s

0.09%
KAISER 17:42,6 s 10:48,5 s 7:10,8 s 6:05,7 s

5 Future Work

KAISER does not consider BTB attacks, as they require knowledge of the BTB
behavior. The BTB behavior has not yet been reverse-engineered for recent Intel
processors, such as the Skylake microarchitecture (cf. Section 2.3). However,
if the BTB is reverse-engineered in future work, attacks on systems protected
by KAISER would be possible. Evtyushkin et al. [3] proposed to use virtual
address bits > 30 to randomize memory locations for KASLR as a zero-overhead
countermeasure against BTB attacks. KAISER could incorporate this adaption
to effectively mitigate BTB attacks as well.

Intel x86-64 processors implement multiple features to improve the perfor-
mance of address space switches. Linux currently does not make use of all fea-
tures, e.g., Linux could use process-context identifiers to avoid some TLB flushes.
The performance of KAISER would also benefit from these features, as KAISER
increases the number of address space switches. Consequently, utilizing these op-
timization features could lower the runtime overhead below 0.28%.

KAISER exploits very recent processor features which are not present on
older machines. Hence, we expect higher overheads on older machines if KAISER
is employed for security reasons. The current proof-of-concept implementation of
KAISER shows that defending against the attack is possible. However, it does
not eliminate all KASLR information leaks, especially information leaks that
are not caused by the same hardware effects. A full implementation of KAISER
must map any randomized memory locations that are used during the context
switch at fixed offsets. This is straightforward, as we have already introduced
new mappings which can easily be extended. During the context switch, kernel
memory locations are only accessed through these fixed mappings. Hence, the
offsets of the randomized parts of the kernel can not be leaked in this case.
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6 Conclusion

In this paper we discussed limitations of x86 impeding practical kernel address
isolation. We show that our countermeasure (KAISER) overcomes these limi-
tations and eliminates all microarchitectural side-channel attacks on kernel ad-
dress information on recent Intel Skylake systems. More specifically, we show
that KAISER protects the kernel against double page fault attacks, prefetch
side-channel attacks, and TSX-based side-channel attacks. KAISER enforces a
strict kernel and user space isolation such that the hardware does not hold any
information about kernel addresses while running user processes. Our proof-of-
concept is implemented on top of a full-fledged Ubuntu Linux kernel. KAISER
has a low memory overhead of approximately 8 kB per user thread and a low
runtime overhead of only 0.28%.
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