
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281066023

Some Potential Issues with the Security of HTML5 IndexedDB

Conference Paper · October 2014

DOI: 10.1049/cp.2014.0971

CITATIONS

2

READS

1,494

3 authors:

Some of the authors of this publication are also working on these related projects:

Modelling and analysis of telecare and telehealth usage and management View project

PhD work View project

Stefan Kimak

Northumbria University

7 PUBLICATIONS 11 CITATIONS

SEE PROFILE

Jeremy Ellman

Northumbria University

28 PUBLICATIONS 131 CITATIONS

SEE PROFILE

Christopher Laing

Sciendum Ltd

55 PUBLICATIONS 272 CITATIONS

SEE PROFILE

All content following this page was uploaded by Stefan Kimak on 18 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/281066023_Some_Potential_Issues_with_the_Security_of_HTML5_IndexedDB?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/281066023_Some_Potential_Issues_with_the_Security_of_HTML5_IndexedDB?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Modelling-and-analysis-of-telecare-and-telehealth-usage-and-management?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/PhD-work-166?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Kimak?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Kimak?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Northumbria_University?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Kimak?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Ellman2?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Ellman2?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Northumbria_University?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jeremy_Ellman2?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Laing?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Laing?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Laing?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stefan_Kimak?enrichId=rgreq-93436c4757b472f78a7c935990eb97ac-XXX&enrichSource=Y292ZXJQYWdlOzI4MTA2NjAyMztBUzoyNjM4MTA1MjMwNzA0NjVAMTQzOTkwODczODcyMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Some Potential Issues with the Security of HTML5 IndexedDB

Stefan Kimak , Jeremy Ellman, Christopher Laing
Northumbria University, Faculty of Engineering and Environment

Newcastle upon Tyne, UK
stefan.kimak@ northumbria.ac.uk , jeremy.ellman@ northumbria.ac.uk, christopher.laing@ northumbria.ac.uk

Keywords: Component web security; IndexedDB, Security,
Forensic Test, Encase

Abstract

The new HTML5 standard provides much more access to
client resources, such as user location and local data storage.
Unfortunately, this greater access may create new security
risks that potentially can yield new threats to user privacy
and web attacks. One of these security risks lies with the
HTML5 client-side database. It appears that data stored on
the client file system is unencrypted. Therefore, any stored
data might be at risk of exposure. This paper explains and
performs a security investigation into how the data is stored
on client local file systems. The investigation was undertaken
using Firefox and Chrome web browsers, and Encase (a
computer forensic tool), was used to examine the stored data.
This paper describes how the data can be retrieved after an
application deletes the client side database. Finally, based on
our findings, we propose a solution to correct any potential
issues and security risks, and recommend ways to store data
securely on local file systems.

1 Introduction

While HTML5 is still in the process of being standardized by
the W3C [1], its adoption will greatly help developers
resolve recognized problems, such as media and online data
handling; thereby providing a more robust method for
handling data [10]. Furthermore, the enhanced
functionalities of HTML5, such as a client-side database
called IndexedDB (which will be embedded within the web
browser), will provide additional benefits, such as reducing
the web server load. However, while client-side databases
have the advantage of reducing load on the web server, their
performance will be dependent on the user’s web browser;
particularly, how the browser implements the new client side
database API; otherwise known as the IndexedDB API.
IndexedDB is storing data on client side, which provides an
offline functionality. This means that data can be accessed
even without network connection. This is a big advantage
when using mobile phone, which is bringing better batter life
and performance.
This paper will focus on the security of this new browser-
based storage capability, and a series of experiments will
show how vulnerable the IndexedDB API is to attacks. These
attacks will be described in more detail later, after which we

will propose methods of protecting against such attacks. This
paper will also investigate how the web application will store
the data in the client-side database, and a series of tests will
be conducted to retrieve the deleted database files. A possible
solution for storing and retrieving data in secure manner will
be proposed and described in further detail.
The testing will use Firefox and Chrome browsers, as they
currently support the IndexedDB client-side database. The
investigation will focus on the data storage mechanism of the
client-side database. To help us analyse the results, a forensic
tool called Encase was used; Encase is an industry standard
computer forensics tool, used in the majority of criminal
cases involving the collection and presentation of digital
evidence [5]. Encase is a software to access raw data, and
provide the functionality to create disk images.

2 Background

The development of new Web technologies faces a trade-off
between stronger security (thereby protecting the user), and
increased functionality (thereby helping the user).
Unfortunately, this trade-off may have resulted in the
development and implementation of an insecure API, namely
IndexedDB API. It should be noted that the implementation
of the IndexedDB into Web browsers is not yet fully
completed; consequently some of these security risks may no
longer exist in future implementations of the IndexedDB
API. The security issue with the unencrypted data stored into
IndexeddB is considerably a structure flaw. This means that
the database is designed to store all of the data in
unencrypted state.

2.1 Problem identification

IndexedDB is storing data in unencrypted state. This
information might not be sensitive, such as usernames or
password, but can include client name, address, place of
birth or date of birth.
If some of the information is put together, then this can lead
to identity theft.
To prevent leaking of data all over the place, we propose an
algorithm to secure this information, and prevent the end
user from identity theft.
IndexedDB also works on mobile devices, where the data is
stored into internal phone memory. Therefore, the problem
also exists on mobile device, which is more serious
compared to desktop. The deleted data can be retrieved
from any mobile device. As the data is unencrypted, the

security issue is much higher. Considering the scenario
where the mobile phone is lost or stolen, it will be possible
to retrieve the deleted data. This risk of data exposure is
much higher in this case.
Compared to storing data on server, where data is not
available to recover after deletion, storing on client side is
going to be more insecure.

2.2 Related Work

Previous versions of HTML5 client side databases as Web
SQL, LocalStorage lacks the encryption of data. The security
of data stored in client side database follows the same
principles as cookies, more details in section 3. On client side
the only protection is firewall. Compared to storing data on
server or cloud, the encryption is done separate [15]. As
described, the data is stored encrypted, and will be decrypted
only in user browser.

2.3 IndexedDB Structure

Files and data stored by the browser are retained on the file
storage system, on the computer’s hard drive. The client-side
database, IndexedDB, is a persistent client-side database,
consequently the files reside on the user file system and can
be recovered until they are overwritten by other files.
IndexedDB treats file data just like any other type of data. An
application can write a file (or Blob), into IndexedDB, as
well as storing strings, numbers and JavaScript objects [6].
This is detailed in the IndexedDB specifications and, so far,
implemented in both the Firefox and Chrome applications of
IndexedDB. In Firefox and Chrome’s IndexedDB
implementation, the files are stored transparently, externally
to the actual database; the performance of storing a file in
IndexedDB is just as good as storing it in a filesystem. It
does not bloat the database and slow down other operations.
Moreover, reading from the file means that the
implementation reads from an OS file; therefore, it is just as
fast as a filesystem.
The Firefox IndexedDB implementation will, if it is storing
the same Blob in multiple files, create only one copy.
Writing further references to the same Blob just adds to an
internal reference counter [9]. This is completely transparent
to the web page; it writes data faster while using fewer
resources.

2.3 Value in Database

Each record has a value, which could include anything that
can be expressed in JavaScript, including: Boolean, number,
string, date, object, array, regexp, undefined, and null.
IndexedDB enables the storage of structured data, and unlike
cookies and DOM Storage, IndexedDB provides features that
enable to group, iterate, search, and filter JavaScript objects
[6]. Each record consists of a key path and a matching value.
These can be a simple type, such as string or date, or more
advanced, such as JavaScript objects and arrays. It can

include indexes for faster retrieval of records and can store
large amount of objects.

IndexedDB is a key-value store in the same way as Local
storage. However, Local storage just retains strings only key;
therefore, the usual approach to local storage is to
JSON.stringify it. While this is suitable for finding the object
with key uniq, the only way to retrieve the properties of
myObject from local storage is to JSON.parse the object and
examine it. IndexedDB can store data other than strings in
the value, including simple types such as DOMString and
Date as well as Object and Array instances [10].
Furthermore, it can create indexes on object properties
containing a specific value. So while IndexedDB can hold
the same one-thousand objects, it can also create an index on
the b property and use that to retrieve only the objects where
b==2 without having to scan every object in the store.
Furthermore, IndexedDB is aware of ranges; therefore, it can
search and retrieve all records beginning with 'ab' and ending
with abd' in order to find 'abc' etc.

IndexedDB is implemented differently across browsers.
Firefox uses SQLite and Chrome LevelDB. It should be
noted that LevelDB is not a SQL database. Like other
NoSQL and Dbm stores, it does not have a relational data
model, it does not support SQL queries, and it has no support
for indexes.

IndexedDB is implemented in the browser on top of another
database. This mean that it does not work on its own, as it is
an API layer. IndexedDB is storing the value in local
filesystem, which means that the limit of storage is limited to
space on user hard drive. When compared to other databases,
IndexedDB is updating the whole data rather that just the bits
of specific data values.

3 Potential attack vector
This section is considering an unauthorized physical access
attack to IndexedDB file, from outside the user local
machine.

3.1 CORS (Cross-origin resource sharing) Attack

CORS is a mechanism that allows JavaScript on a web
page to make XMLHttpRequests to another domain, not the
domain the JavaScript originated from. Normally, web
browsers would otherwise forbid such ‘cross-domain’
requests. CORS defines a way in which the browser and the
server can interact to determine whether or not to allow the
cross-origin request [12]. By letting third party applications
accessing the data created with other domains application can
lead to security issues, such as information leakage.
Therefore user agents must implement Cross-origin resource
sharing with IndexedDB in greater security details. Also, in
some CORS should not be allowed, to protect the privacy of
the end user.

Scenario 1: Unauthorized physical access to the OS file
system, where the data from the browser database
(IndexedDB) is stored unencrypted.

CORS expands on the design of the Same Origin Policy.
Each resource declares a set of origins, which are able to
issue various kinds of requests (such as DELETE, INSERT,
UPDATE) to, and read the contents of, the resource. CORS
is a “blind response” technique controlled by an extra HTTP
header (origin), which, when added, allows the request to
reach the target. This means, that an application creates an
IndexedDB database, which is saved with the domain name.
Another application cannot access the database files, as the
access is restricted for the particular domain. This attack is
based on bypassing the Same Origin Policy and establishing
cross-domain connections to allow the deployment of a
Cross-site Request Forgery attack vector [11].

Scenario 2 (Data Breach): Unauthorized access from an
external machine (bypassing the Same Origin Policy (SOP))
to read the data and retrieve the information stored in the
IndexedDB files.

But why is the ability to read and retrieve data stored in the
IndexedDB files such an issue. In order to demonstrate the
problem, we will firstly conduct an analysis of the
IndexedDB database file.

4 Analysis of indexeddb database file

The first step in conducting this analysis is to build a ‘clean’
Hard Disk Drive (HDD) on a PC [HP Z400 6-DIMM with
12GB RAM and XEON 4 physical cores (8logical cores)]
that will include the operating system (Windows 7, 64-bit)
and web browsers (Firefox v.20.0.1; Chrome
v.29.0.1547.620) after which some initial Internet browsing
will be conducted. The HDD will then be ‘acquired’ using
Encase v.6.11.1. This will be the starting point for each
investigation. After each experiment, the image needs to be
restored to a ‘clean’ state, and following each experiment, the
disk will be forensically wiped, and then same component
(operating system, web browsers) will be installed.
The aim of these experiments is to investigate and show how
the data is deleted from IndexedDB (local file) and also if the
data is in unencrypted state. We will also perform an reuse of
recovered file and show, if it can be successfully achieved.

EXPERIMENT 1: RECOVERY OF DELETED INDEXEDDB SQLITE
DATABASE FILE

In this experiment, the SQLite database file will be deleted
from a Hard Disk Dive (HDD), in a PC [HP Modified to i5
processors and 16GB Ram] running a Windows 7 64-bit
Operating System. Then using Encase v.6.11.1, locate the
deleted data and perform a data recovery. The structure of the
web browsers (Firefox v.20.0.1 and Chrome v.29.0.1547.62)
will also be examined to assess how the data is stored.

EXPERIMENT 1: RESULTS

Firefox stores all data in a temporary table (SQLite database)
from where the data is copied into an Object Store, complete
with key/value link. After the data has been copied
successfully, the temporary table is dropped. The browser
always stored the SQL file in the same location in the file
system. On Firefox the location is C:\Users\[user-
name]\Application Data\Mozilla\Firefox\Profiles\[profile
name.default]\indexedDB\[domain-name]\[database-name]
where on Chrome C:\Users[user-
name]\AppData\Local\Google\Chrome\User
Data\Default\IndexedDB. Consequently, and previously
stored data is always overwritten. Interestingly, when the
data is deleted from the application (using delete function),
the location within the file system is reserved for that deleted
file. It is keeping the reserved location, because the deleted
file still persists on the HDD. So when running the
application again, the browser always allocates a different
location for the newly created Object Store.

Allocation of file storage in Chrome is slightly different; all
of the databases are stored in the same file. Consequently, it
is assumed that Chrome is using compression for storing
browsing data.

In Encase we choose the option for Copy/UnErase the
deleted file. This exported the deleted file with all the data.
While the deleted file data can be read from Encase, we
choose to export the file and opened with SQLite Manager
(Figure 1). In this way all the data in table was visible, and
the field values in the Blob could be exported unencrypted.

Figure 1: Exported deleted database file.

EXPERIMENT 2: CLEARING THE BROWSER CACHE

Experiments in Firefox will include deleting the data by
clearing the browser cache (deleting the offline data option).
Each experiment will store 300K records with a file size of
127MB. Experiments in chrome will include deleting the
data by clearing the browser cache (clearing browsing data-

Hosted app date). Each experiment will store 300K records
with a file size of 128MB.

EXPERIMENT 2: RESULTS

Clearing the browser cache in Chrome clears the databases
and deletes the file where it is stored.
In Firefox the clearing the cache does not delete the database
file from local file system.

EXPERIMENT 3: REUSE OF RECOVERED INDEXEDDB
DATABASE

In this experiment the possibility of reusing a recovered
IndexedDB database in a different web browser was
investigated. This involved identifying the location (physical
address on the HDD), of the file after it had been deleted. In
addition, this experiment also considered if the database
name is changed after it has been deleted; to see if the Web
application can read deleted file with different filename.
When deleting a database from the application, everything in
the folders is deleted; including those that can be stored
locally (image, document, video, audio).
SQLite is not a typed database, which means that any data
type can be put into any cell, regardless of the type declared
for the column, and the database will attempt to convert it.
Similarly, a different type than the column type is requested,
SQLite will also convert this value.

Figure 2: The physical address, and data in database file.

EXPERIMENT 3: RESULTS

Figure 2 displays the physical address of the file before and
after deletion. Also the physical address of the newly created
database file persists on the same location. The deleted files
are marked with red cross. This file was restored with Encase
and exported to another hard drive. The file was restored
into database folder, and application was run to check if the
data could be accessed. The result is that the application read
the file and all of the data in unencrypted state was available
for us to see.

5 Analyses and Possible Solution

The results were as expected; the deleted data has been
marked as deleted, but it can be exported and all the
information inside the database could be read. Moreover,
exported data that has been imported to another PC running
Windows 7 can be accessed and re-used. However a possible
solution to this security issue is presented below.

5.1 A Proposed Solution to Security issue in IndexedDB

In this section we are going to propose a solution to
IndexedDB storage security issue.
The prevention against such scenarios might include
encryption of the files stored by the browser on the file
system. All the data stored by the browser will be encrypted
and stored to the file system. When retrieving the data, a
secure key will be required to read the data from the file
system. An encryption library will generate this key, which
will permit access to read the data. Otherwise, the data
remains encrypted and impossible to read. The encryption
key will be downloaded dynamically and the key (password)
will be stored in session key. When the key is secure, then it
will encrypt data. When a user closes browser, then the key is
overwritten in RAM. This will help to prevent attacker
getting access to secure key when reading data from RAM.

The algorithm to secure saving of data could be a JavaScript
library (proposed Stanford JS Encryption library), which will
help us to prevent saving data in unencrypted state.
We going to explain steps to write, update and read the data
with algorithm in pseudo code.

The following steps are described writing or updating data to
database.

1. Ensure	
 we	
 have	
 established	
 the	
 secure	
 connection	

trough	
 OAuth - The first step is to provide a secure
login functionality, which can be provided by web
application. The web application will use the login to
authenticate a user and securely logged the user into
system.

2. Open	
 a	
 connection	
 to	
 database - When an
application requests a new transaction for IndexedDB to
open database and save data, the designed encryption
library extension will encrypt the data. This way the data
will be stored in an encrypted state and not readable to
others.

3. Encryption	
 library	
 generates	
 public	
 and	
 private	

key - When the data is encrypted a key will be generated
and stored with the user information on server. Client-
side encrypts sensitive data using the public key, which
will be generated and stored on sever side. This public
key is used when encrypting information using the
JavaScript library.

Public and private key are created simultaneously using
the same algorithm (RSA- Rivest-Shamir-Adleman).

4. Encrypt	
 data - When Client-side encryption is enabled,
an RSA keypair is generated and user will be given a
specially formatted version of the public key. RSA is the
algorithm that is used to encrypt data with a private key
to produce a digital signature [13]. The private key,
however, is never revealed to user or anyone else. Once
the data servers, the data is decrypted using the keypair’s
private key [14]. Private key is used to decrypt text that
has been encrypted with public key. It uses the industry-
standard AES algorithm at 128, 192 or 256 bits; the
SHA256 hash function; the HMAC authentication code.

5. Save	
 the	
 file	
 and	
 close	
 the	
 connection	

	

When reading the data, the following steps needs to be
fulfilled.

1. Checking	
 user	
 credentials - When the user request the
read the data from database, the web application will
check user credentials (if the session is active) and get the
key from server to allow decryption of data.

2. Get	
 the	
 key	
 to	
 decrypt	
 data	
 -­‐ Upon successful
authentication user will be given a public key, which will
be used for decryption of the data. This private key will
be stored on server side, with all the user information,
which is used for decrypt the data. We are going to use
OAuth 2, which is an open standard for authorization.
This will be used to securely transfer private key to
server.

3. Decrypt	
 Data	
 –	
 Encryption library will check for
matching combination of private and public key, and
perform decryption of data.	

4. Show	
 the	
 decrypted	
 data	
 to	
 user	

5. Close	
 the	
 connection	

For a secure authentication with server we are going to
consider OAuth. This will provide authentication between
the application and web server using a security token. We do
not consider security issues with OAuth, because this will be
done in later stage, when the implementation is done.
The data is stored unencrypted to file system, which can be
accessed by the web application. When an application send a
request to web browser to store the data on local file system,
the cryptography library will encrypt the data, to be stored
secure. A secure key will be also generated and stored on
web server. Reading the data from local file system will be
possible only when a secure key is provided and the
authentication between web application and server is
established. Considering all of the points are made and
connection is securely established, the data is decrypted by
cryptography library and displayed trough web browser to
user. In fig. 3 we highlight the proposed solution showing
how the cryptography library will be implemented. The
library will be implemented on top of web browser API. It

should be noted, that at this stage this solution is only
theoretical, however further work will be undertaken to prove
this hypothesis.

The algorithm will consist of the following components,
which are build into browser (Figure 4).

• Mechanism for generating private and public key
• Mechanism for checking the combination of keys
• Encryption
• Decryption

 Figure 3: Proposed Encryption Library

Figure 4: Encryption and decryption using keys

Encryption/Cryptography library is a piece of software or
code, which encrypts readable text into unreadable data. This
data can be accessed by using an encryption key. Some
examples of encryption libraries are listed below. These are
just few encryption libraries, which are considered for
implementation into browser. This libraries were chosen,
because provide the functionality to encrypt on client side,
and also are available as open source.

OpenSSL: Open Source toolkit implementing the Secure
Sockets Layer (SSL v2/v3) and Transport Layer
Security (TLS v1) protocols as well as a full-strength general
purpose cryptography library [4].

Crypto++: A free C++ library for cryptography: includes
ciphers, message authentication codes, one-way hash
functions, public-key cryptosystems and key agreement
schemes [2].

GPGME: (GnuPG Made Easy) a C language library that
allows support for cryptography to be added to a programme.
It is designed to provide easier access to public key crypto
engines like GnuPG or GpgSM. GPGME provides a high-
level crypto API for encryption, decryption, signing,
signature verification and key management [7].

BeeCrypt: A C++ API cryptography library [3].

Libgcrypt: GNU's basic cryptographic library [8].

Off course, another possible solution to problem might
include usage of an external device to store data from a
browser. For example, a user could specify to a location to
which any IndexedDB files should be stored when browsing
the web or running some applications. This includes an
option where the data could be written and read from an
external source, such as USB. The USB key will need to be
secured with access encryption and restricted to access data
when the master password is entered.

6 Conclusion

In this paper, we have demonstrated security related flaws
within IndexedDB. While the browser can delete IndexedDB
files stored on the local filesystem, they can be retrieved by
Encase. Unfortunately, the retrieved data is in an
unencrypted format, and given the nature of the data held
within the IndexedDB API, a potential security issue exists.
All the data in IndexedDB is exposed. We have demonstrated
a solution for this security issue, which includes a secure
‘library’, located between the browser and the filesystem. All
data stored by the Indexed DB application will be encrypted
and saved to the library. Therefore, if the application needs to
read the data, an encryption key will be required. Without a
key, the data will not be decrypted and reading the data will
not be possible. This will help to secure the data stored on the
client side and prevent retrieval in an unencrypted state.
Future work will focus on implementing the cryptography
library into web browser and testing for possible attacks.

References
[1] Berjon, R. (2014) W3C HTML5 Specification. Available at:

http://www.w3.org/html/wg/drafts/html/master/
[2] Dai, W. (2004) Cryptoo++ Library. Availabe at:

http://www.cryptopp.com Last Accessed :20 May 2014
[3] Doxygen (2009) BeeCrypt C++ API Documentation. Availabe at:

http://beecrypt.sourceforge.net/doxygen/c++/index.html Last Accessed
:20 May 2014

[4] Engelschall, R. S. (1999). About the OpenSSL Project Available at:
https://www.openssl.org/about/

[5] Simmons, M.Chi, H. (2012) Designing and implementing cloud-based
digital forensics hands-on labs. Proceeding InfoSecCD '12 Proceedings
of the 2012 Information Security Curriculum Development
Conference. Pages 69-74

[6] Flanagan, D. (2011) JavaScript: The Definitive Guide Activate Your
Web Pages. 6th edition, Publisher: O'Reilly

[7] Koch, W. (1999) GPGME – The GNU Privacy Guard. Available at:
https://www.gnupg.org/index.html Last Accesed : 20 May 2014

[8] Koch, W. (2003) Libgcrypt. Available at:
http://www.gnu.org/software/libgcrypt/ Last Accesed : 20 May 2014

[9] Mehta, N. Sicking, J. Graff, E. Popescu, A. Orlow, J. Bell, J. (2013)
Indexed Database API. Available at:
http://www.w3.org/TR/IndexedDB/ Accessed on: 5th July 2014

[10] Sarris, S. (2013) HTML5 Unleashed. Published by: Sams. Print ISBN-
10: 0-672-33627-8

[11] Stuttard, D. Pinco, M. (2007) Web Application Hacker’s Handbook.
Published by: Wiley Publishing, Indianapolis, Indiana

[12] Zakas, C. N. (2010) Cross-domain Ajax with Cross-Origin Resource
Sharing". NCZOnline. Available at:
http://www.nczonline.net/blog/2010/05/25/cross-domain-ajax-with-
cross-origin-resource-sharing. Last Accessed: 20 February 2014

[13] Bernett, S. Paine, S. (2001) RSA Security’s Official Guide
toCryptography. Osborne/McGraw-Hill

[14] Mollin, R. (2003) RSA and Public-Key Cryptography. CHAPMAN &
HALL/CRC A CRC Press Company ISBN 1-58488-338-3

[15] Popa, A.D. Stark, E. Valdez, S. Zeldovich, N.Kaashoek, F.M.
Balakrishnan, H. (2014) Building web applications on top of encrypted
data using Mylar. 11th USENIX Conference on Networked System
Design and Implementation. Pages 157-172

View publication statsView publication stats

https://www.researchgate.net/publication/281066023

