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Abstract—We investigate the complexity and utility of per-
forming Multiple Bit Upset (MBU) vulnerability analysis in
modern microprocessors. While the Single Bit Flip (SBF) model
constitutes the prevailing mechanism for capturing the effect of
Single Event Upsets (SEUs) due to alpha particle or neutron
strikes in semiconductors, recent radiation studies in 90nm and
65nm technology nodes demonstrate that up to 55% of such
strikes result in Multiple Bit Upsets (MBUs). Consequently, the
accuracy of popular vulnerability analysis methods, such as the
Architecural Vulnerability Factor (AVF) and Failures In Time
(FIT) rate estimates based on the SBF assumption comes into
question, especially in modern microprocessors which contain a
significant amount of memory elements. Towards alleviating this
concern, we present an extensive infrastructure which enables
MBU vulnerability analysis in modern microprocessors. Using
this infrastructure and a modern microprocessor model, we
perform a large scale MBU vulnerability analysis study and
we report two key findings: (i) the SBF fault model over-
estimates vulnerability by up to 71%, as compared to a more
realistic modeling and distribution of faults in the 90nm and
65nm processes, and (ii) the rank-ordered lists of critical bits, as
computed through the SBF and MBU models, respectively, are
very similar, as indicated by the average rank difference of a bit
which is less than 1.45%.

I. INTRODUCTION

Single event upsets (SEUs) due to alpha particle or neutron

strikes [1] have been extensively studied over the last decade

and various countermeasures have been developed to address

the concomitant transient errors [2]. Most such methods rely

on vulnerability analyses which capture the effect of an SEU

through a single bit-flip (SBF) model. However, as processes

feature sizes continue to shrink, it has become more likely

that adjacent cells may also be affected by a single event [3],

thereby causing a multiple-bit upset (MBU).

An MBU is defined as an event that causes more than one

bit to be upset during a single measurement [5]. During an

MBU, multiple bit errors in a single word can be introduced, as

well as single bit errors in multiple adjacent words [6]. While

MBUs have been encountered in the past in space applica-

tions [3], advanced memory structures exhibit a dramatically

increasing multi-bit failure rate [4], [7], pinpointing the need

for incorporating multi-bit upsets in accurate vulnerability

analyses. Specifically, in [4], experiments show that only 45%

of the upsets affect only 1 bit; the rest may affect up to 7 bits,

as shown in Figure 1. This failure rate is further accelerated

Fig. 1. Frequency distribution of number of faulty bits generated per SEU
for different process sizes [4]

by reduced power supply voltage, increased clock frequency,

crosstalk and electromigration effects [8].

Considering both single-bit and multi-bit upsets becomes

particularly important when assessing vulnerability of modern

microprocessors. A large area percentage of such circuits is

occupied by several in-core memory arrays, typically im-

plemented using SRAM cells. To the best our knowledge,

while extensive studies have been performed on increasing the

reliability of caches and register files [9], [10], there are only

a few MBU studies targeting modern microprocessor modules

[11], [8], [12], [13]. The reason for the absence of such studies

is three-fold:

1) Public availability of modern microprocessor Register

Transfer Level (RTL) models is limited. An RTL model

is required, as the exact number of memory elements

can only be extracted from such a detailed model. Thus,

functional simulators are not sufficient for such studies.

2) Simulating an RTL modern microprocessor model is

slow. This becomes a major bottleneck as thousands of

simulations are required in an extensive Statistical Fault

Injection (SFI) campaign to assess vulnerability.

3) Proper modeling of multiple-bit upsets is required. Such

models depend on detailed radation-induced studies.

Blindly assuming multiple bit flips in adjacent cells is

erroneous, as there may be no series of electrical events

that can result to such outcome following a single event

upset.
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In this paper, we address the aforementioned issues and we

present a multiple bit error vulnerability analysis study in a

complex modern microprocessor module. This study reveals

that using the conventional SBF fault model results in a

gross overestimate of module vulnerability, as compared to

using more realistic fault models which are crafted based on

the findings of recent proton and neutron irradiation tests.

An ancillary outcome of this study is the observation that

the rank-ordered list of SRAM cells, with respect to their

SEU vulnerability, is largely independent of the fault model

utilized for the analysis. The rest of the paper is organized

as follows: Section II briefly discusses existing techniques for

vulnerability analysis in modern microprocessors. Section III

introduces the methods used to enable this study, followed by

section IV where the employed simulation-based experimental

infrastructure is described. Results, along with a comparative

analysis between the various models are presented in section

V, followed by conclusions in section VI.

II. RELATED WORK

The vulnerability of a microprocessor, expressed as the Soft

Error Rate (SER), is defined as the product of the raw FIT

(Failures In Time) rate and the probability that a fault results

into a visible user error. The FIT rate can be calculated through

sophisticated models, usually as a function of the elevation,

technology generation [14], supply voltage, etc. Typical rate

numbers for latches vary between 0.001 - 0.01 FIT/bit [1].

However, calculating the probability that a fault results in a

visible user error is not trivial and researchers have followed

various approaches to provide accurate estimates.

In [15], AVF is defined as the probability of a bit-flip

in a microprocessor leading to a user visible system error.

The authors calculate AVF by tracking the subset of the

microprocessor state bits required for architecturally correct

execution (ACE). An upset affecting ACE bits will definitely

cause a visible error, while events on un-ACE bits will never

propagate to the output. ACE analysis is further elaborated in

[16], introducing the Silent Data Corruption (SDC) rate and

the Detected Unrecoverable Error (DUE) rate metrics, further

increasing the granularity of ACE analysis.

Wang et. al [17] investigated the accuracy of ACE anal-

ysis through extensive statistical fault injection experiments.

Their results corroborated that ACE analysis overestimates

microprocessor vulnerability, mostly due to less detailed

structures available in the performance model employed in

[15].Furthermore, recent radiation studies with actual proton

and neutron irradiation tests showed that SFI measurements

closely match in-field exposure [18]. While [19] shows that

ACE inaccuracy can be reduced by adding extra detail to the

employed model, accurate AVF analysis heavily relies on the

existence of a detailed RTL model.

Perfoming extensive fault injection campaigns on a complex

RTL microprocessor model incurs great cost in terms of

time and computational power. In order to bridge this gap,

[20] introduced a method called Global Vulnerability Factor

(GSV) analysis to approximate AVF using single stuck-at

fault simulations. GSV can provide, in much shorter time, the

same relative ranking of memory elements in terms of their

criticality, as compared to AVF. However, the acquired GSV

figures are dependent on the experimental setup and are not

transferrable across designs and experiments.

In [21], program vulnerability factor traces are used to

accelerate AVF analysis. The performance improvement of

2x, however, is still not suitable for modern microprocessor

designs. The methodology presented in [22], combines one-

time fault injection and static analysis of the application

control and data flow in order to accurately evaluate the effect

of a soft-error.

All the aforementioned vulnerability analysis techniques

employ single error models to estimate the reliability of the

microprocessor. Multiple, non-concurrent faults are discussed

in [23] in order to evaluate the efficiency of design diversity.

Exhaustive characterization of multi-bit errors in 90/130nm

memories is presented in [7], while in [13], the authors

perform multi-bit error campaigns in an embedded cache and

discuss how cache scrubbing can reduce the double-bit error

rate. Another investigation of multi-bit failure rate in advanced

memories appears in [4], targeting 65nm processes. The latter

study triggered the definition of a new probabilistic framework

for incorporating vulnerability of memories to different fault

multiplicities into AVF [12]. Finally, [8] investigates the effects

of multiple non-concurrent faults on the operation of a micro-

processor. Both [12] and [13] conclude that the probability of

non-clustered double faults is negligible, and can be eliminated

with simple scrubbing techniques [13].

III. ENABLING MBU ANALYSIS IN MODERN

MICROPROCESSORS

In this section, we discuss the factors that need to be

addressed in order to perform an extensive MBU analysis in

modern microprocessor designs.

A. MBU Fault Model

Recent radiation tests [4], [12] presented real-life evidence

of spatial multi-bit upsets in technologies below 130nm.

Figure 1 shows the observed multi-bit upsets for two different

technologies. For 65nm, almost 20% of the SEUs generated 4

soft errors, highlighting the neccessity of taking into account

MBUs during SER analysis.

Typically observed fail bit patterns, as presented in Figure

2, indicate that multi-bit upsets do not manifest as multiple bit

flips spread across rows or columns; instead, they are clustered

in double stripes perpendicular to the wordlines and manifest

as ‘force-to-0’ or ‘force-to-1’ effects. This is attributed to the

‘battery effect’ described by Osada [24]. Figure 3 shows a

highly compact layout of bit cells widely used in the design

of such arrays. Since the p-well is shared among every pair of

columns, in case a particle strikes and causes charge collection,

the generated charge raises the potential of the bulk and turns

on a parasiting bipolar transistor. Hence, the circuit node is

shorted to the bulk and the contents of the cell are flipped.

There is also a probability that parasitic bipolar transistors
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Fig. 2. Typically observed fail bit patterns [4]

Fig. 3. Compact mirror layout of arrays [12]

in neighboring cells sharing the same p-well will turn on,

effectively generating an MBU. Depending on the node hit

by the particle, the value of the cell may or may not change.

For example, in case node Q is struck when the bit is holding

0, the bit cell will not be affected; the same applies when node

QB is struck when the bit has a value of 1. Consequently, about

50% of the upsets will not result into bit flips.

This model is the basis of the experiments performed in

Section V. A similar MBU fault model was also used in [12].

B. Microprocessor model

As discussed in the previous section, an accurate MBU

analysis requires extensive information about the design’s

memory elements. This information is typically not available

when using functional or performance simulators. Thus, a

detailed RTL model is required.

The test vehicle used in this study is an RTL model

of an Alpha 21264 out-of-order microprocessor [25]. The

Alpha processor incorporates all the features present in current

commercial microprocessors, such as aggressive out-of-order

scheduling, deep 12-stage pipeline, superscalar execution, etc.,

enabling an accurate analysis that can be applied to state-of-art

designs.

Since an advanced microprocessor design is usually too

big to be synthesized and fault simulated without significant

reduction in the embedded memory sizes, we implemented

an extensive fault injection mechanism built around the RTL

model, supporting various fault models and flexible fault in-

jections. More details about the fault simulation infrastructure

can be found in [26].

C. Statistical Fault Injection

Even with an efficient fault injection mechanism, RTL

simulations are very slow. Given that, as shown in [27],

at least 250 faults injections per bit are needed for AVF

estimation, calculating the AVF of an instruction scheduler

requires approximately 2M simulations. Even with today’s

computational power, simulation time is a major bottleneck

Fig. 4. Example of hierarchical statistical fault injection

in SFI campaigns when million of instructions and numerous

different workloads need to be analyzed.

In order to reduce the simulation costs, we employ Hier-

archical SFI, as presented in [27]. During HSFI, faults are

injected into different levels of the hierarchy, as defined by

the designer. For example, Figure 4 shows an HSFI campaign

in the Alpha 21264 instruction scheduler. In the beginning of

the algorithm, only the scheduler module is being simulated

as faults are injected. Whenever a fault appears on the primary

outputs of the given level, simulation stops and faults are re-

injected at the next higher level. The process repeats until

a fault reaches the highest level where its impact can be

accurately classified.

HSFI takes advantage of the high masking factors of modern

microprocessor designs. Thus, only a small percentage of

faults is being carried from level to level. Since simulation

at lower levels is much faster, the fault database is pruned

quickly and only a very small percentage of faults need to be

injected at the full microprocessor model. Employing HSFI

leads to a 14x speed-up on average, which is essential for the

numerous simulations employed in an MBU analysis.

IV. EXPERIMENTAL SETUP

This section presents the specific parameters of the per-

formed large-scale MBU study.

A. Injected Modules

The module employed in this study is the instruction

scheduler of the Alpha 21264 microprocessor. The scheduler

features a 32-slot instruction array for storing the incoming

instructions from the renaming logic, and can dispatch up to

6 instructions to the corresponding functional units. It also

incorporates a scoreboard to resolve data hazards. A block

diagram of the scheduler appears in Figure 5. The instruction

queue memory buffer is the target of this analysis. Including

the issue and valid bits, as well as the 217-bit instruction word,

the instruction queue is a 219x32 memory buffer.
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Fig. 5. Block diagram of Alpha 21264 instruction scheduler

B. Fault injection

The HSFI approach described in III-C was employed for

the fault injection campaigns performed. Specifically, a 3-level

design is used: Scheduler, Out-Of-Order cluster, Full chip.
With regards to the fault model, besides the traditional SBF

model, the MBU fault model discussed in III-A was utilized

to provide multi-bit failure estimates. Up to 4 MBUs were

injected using a uniform distribution across location and time.

For each fault model used, a minimum of 250 injections per

bit were performed. In total, the results were acquired after

approximately 10M fault simulations. The simulations were

performed using two servers featuring two Quad-Core Xeon

processors with 16GB of RAM.

C. Benchmarks and fault outcomes

In order to ensure compliance to in-field reliability require-

ments, vulnerability analysis should rely on employing real

life applications. For the purpose of this study, we utilize 5

SPEC bechmarks, namely bzip2, cc, gzip, parser and

vortex.
In the presence of an injected fault, workload execution can

be affected in four different ways:

• Fault masked: The output of the SPEC benchmark is

correct, thus the fault was masked by the architecture

or the application.

• Stall: The fault caused the microprocessor to stall, either

due to an invalid state, instruction commitment halt or

unhandled instruction exception. Typically, a stall appears

to the user as a system error or crash.

• Silent Data Corruption (SDC): The application finished

successfully, but the output is erroneous.

• TLB miss: The fault changed the memory access location

to an invalid one, leading to a system crash. The TLB

miss includes both data and instruction TLB misses.

In the results presented in the next section, an erroneous

execution encompasses the superset of Stall, SDC and TLB

miss outcomes.

TABLE I
SPEC BENCHMARK STATISTICS

Workload Masked SDC Stall TLB miss
bzip2 84.57% 0.11% 14.93% 0.39%

cc 90.20% 0.10% 9.22% 0.48%
gzip 84.77% 0.25% 14.72% 0.26%

parser 89.19% 0.03% 10.44% 0.34%
vortex 93.64% 0.00% 6.10% 0.26%

Average 88.47% 0.10% 11.08% 0.35%

V. RESULTS AND DISCUSSION

In this section the results of an extensive statistical fault

injection are discussed, along with their repercussions in

resiliency analysis of modern microprocessors.

A. Fault outcome statistics

First, we present the fault injection results in terms of the

fault outcome for each of the executed benchmarks. The four

possible outcomes of a fault injection were discussed in section

IV-C. The fault model used for the presented results is the

single bit-flip.

As presented in Table I, the architecture and application

successfully mask, on average, 88.47% of the injected faults.

This number is consistent with the figures appearing in re-

cent studies [25], [26]. The majority of the faults affecting

execution stall the microprocessor. Very few errors escape

as TLB miss or SDC, but the latter is the most important

possible outcome, requiring elaborate protection mechanisms.

Summarizing, the instruction scheduler of the Alpha 21264

has an average AVF of 0.12.

B. Comparison of different MBU models

In this section, we examine multi-bit upsets, considering up

to 4 upsets for a single event (i.e. strike). Figure 6 shows the

comparison of AVF to the various MBU models.

As expected, the AVF for the 1 Bit-Upset (1BU) model is

approximately 50% of the corresponding AVF for the SBF

figure, since SBF represents an incorrect outcome given a bit-

flip, while xBU is data dependent1. Interestingly, injection of

2BUs also leads to a lower vulnerability figure as compared to

the SBF-based AVF (0.09 vs. 0.12). This is counter-intuitive,

as someone would expect 2BUs to have a greater impact on the

reliability of a module compared to a single bit-flip. However,

due to the data-dependent nature of the adopted MBU fault

model, approximately 25% of the time cells retain their value,

50% of the strikes only flip one bit and 25% of the time

both cell contents are flipped. Furthermore, the output will be

affected only if the injected structure was used after the upset.

Since modern microprocessors exhibit high masking factors,

most 2 BUs are masked and thus their effect does not add up

significantly in the overall vulnerability factor.

As the fault effect radius increases, the vulnerability of the

module under test increases as well. Figure 6 shows that 3

1While AVF is usually defined as the probability of an incorrect outcome
given a bit flip, here we use it in the context of an incorrect outcome given
an SEU, since xBUs do not always result in a bit flip.
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Fig. 6. Comparison of various MBU models

BUs and 4 BUs vulnerability factors are on average higher

than the SBF ones. Moreover, the merit figures of 3 BUs and

4 BUs are similar. Additional experiments showed that the

vulnerability does not increase significantly for upset radius

more than 4 bits. This can be again attributed to the timing

of the strike and possible inactivity of the affected structure.

Specifically, 3+ BUs will most probably affect the outcome of

the simulation as long as the structure is in use. Thus, 5+ BUs

can be approximated by 4 BUs for saving simulation time.

C. Comparison of AVF to representative MBU distributions

Obviously, particle effects will not manifest exclusively as

1, 2, 3 or 4 BUs, but rather as a distribution of different

multi-bit upsets. Using the distribution extracted by radiation

experiments performed in 90nm and 65nm processes [4]

(appearing in Figure 1), we can perform a realistic comparison

of the AVF metric to representative distribution of MBUs.

Specifically, the 90nm Representative Distribution (90nmRD)

consists of 95% 1 BU, 4% 2 BUs and 1% 4 BUs. The 65nm

Representative Distribution (65nmRD) reflects a completely

different distribution, consisting of 45% 1 BU, 18% 2 BUs,

0.1% 3 BUs and 27% 4 BUs (as discussed in the previous

section 5+ BUs are approximated by 4 BUs).

Figure 7 presents the comparison of the SBF model to

the two MBU distributions of the respective process nodes.

The results corroborate that, even with the introduction of a

significant percentage of 2+ MBUs, the SBF still indicates

inflated vulnerability factors, as compared to more realistic

distributions of faults. Specifically, the AVF estimation of 0.12

based on SBF is 0.05 more than the AVF estimation of 0.07

based on 90nmRD. Thus, SBF overestimates AVF by 71%.

Similarly, for the 65nmRD fault model, SBF overestimates

AVF by 33% (0.09 compared to 0.12). The significant differ-

ence among vulnerability estimates indicates that, as feature

size changes, designers need an accurate distribution of faults

in order to robustly evaluate the FIT rate of the design. In fact,

it is highly possible that, in future process nodes the SBF might

actually be an underestimation of the actual vulnerability of

the design.

Fig. 7. Comparison of AVF to representative distributions of MBUs

D. Ranking using SBF vs. representative MBU distributions

Typically, vulnerability analysis is also employed to pin-

point the most critical structures and to guide the use of

budget-constrained reliability enhancement methods. Thus, in

this section we examine how the traditional bit-flip model

compares to the more realistic MBU models in terms of

providing such insight.
In order to select the most critical structures, SFI is per-

formed and then bits are ranked from the most critical to the

least critical. Three different ranked lists are generated using

the SBF, 90nmRD and 65nmRD fault models. The first set

of results presents the coverage achieved by protecting the

most critical bits as pointed by the respective ranked lists. The

Y-axis represents the percentage of transient errors that are

supressed by protecting the corresponding percentage of the

state elements shown in the X-axis. It is clear that, independent

of the fault model utilized for selecting the appropriate number

of bits to be protected, the achieved coverage is almost the

same. This is further highlighted by the position difference

comparison of the bits in the three lists generated by SBF,

90nmRD and 65nmRD models. Table II shows that the average

difference in the position of the bit in the three ranked lists is

less than 1.45%.
This similarity implies that the relative criticality of the bits

is independent of the fault model utilized. This is immensely

useful in cases where there is a specific area budget for

protecting memory elements (e.g. 10% of the most critical

ones), or whenever the most critical bits have to be quickly

pinpointed for further vulnerability analysis.

VI. CONCLUSION

Recent irradiation studies in contemporary process nodes

reveal a significant increase in multiple bit upsets, highlighting

the need for revisiting vulnerability analysis methods which

are typically based on single bit-flip models. To this end,

we developed a comprehensive RTL simulation infrastructure

for enabling large-scale multiple bit upset analysis in modern

microprocessor designs, based on the concept of hierarchical

statistical fault injection and a realistic multi-bit upset fault
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Fig. 8. Coverage comparison of AVF-based and MBU representative
distribution based ranked lists

TABLE II
AVERAGE POSITION DIFFERENCE IN RANKED LISTS OF DIFFERENT MBU

DISTRIBUTIONS

Average Position Difference
Benchmark AVF⇔90nm AVF⇔65nm 90nm⇔65nm

bzip2 1.21% 1.4% 0.43%
cc 1.23% 1.67% 0.56%

gzip 1.03% 1.73% 0.37%
parser 1.32% 1.35% 0.78%
vortex 1.56% 1.12% 0.45%

Average 1.27% 1.45% 0.51%

model. Experimentation with the scheduler module of the the

Alpha 21264 microprocessor elucidates two key findings: (i)

the traditional single bit-flip model overestimates vulnerability

by up to 71% and 33% compared to representative distribution

of faults in 90nm and 65nm feature size technologies, respec-

tively, and (ii) the average position difference of a bit in the

rank-ordered vulnerability lists generated under various fault

models and technologies is less than 1.45%, implying that the

relative vulnerability of a bit is largely design-dependent rather

than technology-dependent.
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