
Intrusion Detection with Neural Networks

Jake Ryan
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712 USA
raven@cs, utexas, edu

Meng-Jang Lin
Dept. of Electr. and Computer Engineering

The University of Texas at Austin
Austin, TX 78712 USA

mj @orac. ece. ut exas. edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at ..\uslin

Austin, TX 78712 USA
r isto@cs .utexas. edu

Abstract

With the rapid expansion of computer networks dur-
ing the past few years, security has become a crucial
issue for modern computer systems. A good way to
detect illegitimate use is through monitoring unusual
user activity. Methods of intrusion detection based on
hand-coded rule sets or predicting commands on-line
are laborous to build or not very reliable. This pa-
per proposes a new way of applying neural networks
to detect intrusions. We believe that a user leaves
a ’print’ when using the system; a neural network
can be used to learn this print and identify each user
much like detectives use thumbprints to place people
at crime scenes. If a user’s behavior does not match
his/her print, the system administrator can be alerted
of a possible security breech. A backpropagation neu-
ral network called NNID (Neural Network Intrusion
Detector) was trained in the identification task and
tested experimentally on a system of 10 users. The
system was 96% accurate in detecting unusual activ-
ity, with 7% false alarm rate. These results suggest
that learning user profiles is an effective way for de-
tecting intrusions.

Introduction
Intrusion detection schemes can be classified into two
categories: misuse and anomaly intrusion detection.
Misuse refers to known attacks that exploit the known
vulnerabilities of the system. Anomaly means unusual
activity in general that could indicate an intrusion. If
the observed activity of a user deviates from the ex-
pected behavior, an anomaly is said to occur.

Misuse detection can be very powerful on those at-
tacks that have been programmed in to the detection
system. However, it is not possible to anticipate all
the different attacks that could occur, and even the at-
tempt is laborous. Some kind of anomaly detection is
ultimately necessary. One problem with anomaly de-
tection is that it is likely to raise many false alarms.
Unusual but legitimate use may sometimes be consid-
ered anomalous. The challenge is to develop a model of
legitimate behavior that would accept novel legitimate
use.

It is difficult to build such a model for the same rea-
son that it is hard to build a comprehensive misuse

detection system: it is not possible to anticipate all
possible variations of such behavior. The task can be,
made tractable in three ways: (1) Instead of gen¢,ral
legitimate use, the behavior of individual users in a
particular system can be modeled. The task of char-
acterizing regular patterns in the behavior of an indi-
vidual user is an easier task than trying to do it for all
users simultaneously. (2) The patterns of behavior ,’an
be learned for examples of legitimate use, instead of
having to describe them by hand-coding possible be-
haviors. (3) Detecting an intrusion real-time, ~ the
user is typing commands, is very difficult because the
order of commands can vary a lot. In many cases it
is enough to recognize that the distribution of com-
mands over the entire login session, or even the entire
day, differs from the usual.

The system presented in this paper, NNID (N~u-

ral Network Intrusion Detector), is based on these
three ideas. NNID is a backpropagation neural net-
work trained to identify users based on what com-
mands they use during a day. The system adminis-
trator runs NNID at the end of each day to see if the
users’ sessions match their normal pattern. If not, an
investigation can be launched. The NNID model is
implemented in a UNIX environment and consists of
keeping logs of the commands executed, forming com-
mand histograms for each user, and learning the users"
profiles from these histograms. NNID provides an ele-
gant solution to off-line monitoring utilizing these user
profiles. In a system of 10 users, NNID was 96c~. ac-
curate in detecting anomalous behavior (i.e. random
usage patterns), with a false alarm rate of 7%. These
results show that a learning offiine monitoring syst~,m
such as NNID can achieve better performance than sys-
tems that attempt to detect anomalies on-line in the
command sequences, and with computationally mu,’h
less effort.

The rest of the paper outlines other approaches to iu-
trusion detection and motivates the NNID approach in
more detail, presents the implementation and an ewd-
uation on a real-world computer system, and out lilws
some open issues and avenues for future work.

72

From: AAAI Technical Report WS-97-07. Compilation copyright © 1997, AAAI (www.aaai.org). All rights reserved.

Intrusion Detection Systems
Many misuse and anomaly intrusion detection systems
(IDSs) are based oil the general model proposed
l)enning (I 987). This model is independent of the plat-
form, system vulnerability, and type of intrusion. It
maintains a set of historical profiles for users, matches
an audit record with the appropriate profile, updates
the protih’ whenever necessary, and reports any anoma-
lies detected. Another ~-omponent, a rule set, is used
for detecting misuse.

Actual systems implement the general model with
different techniques (see l?rank (1994), Mukherjee et
(199.1) for an overview}. Often statistical methods are
used to measure how anomalous the behavior is, that
is, how difl’erent e.g. the commands used are from nor-
real behavior. Such approaches require that the distri-
bution of subjects’ behavior is known. The behavior
can be represented as a rule-b~ed model (Garvey and
l.unt 1991), in terms of predictive pattern generation
(’I’eng et al. 1990}, or using state transition analysis
(Porr~ et ai. 1995). Pattern matching techniques are
then used to determine whether the sequence of events
is part of normal behavior, constitutes an anomaly, or
fits the description of a known attack.

IDSs also differ in whether they are on-line or off-
line. Off-line IDSs are run periodically and they detect
intrusions after-the-fact based on system logs. On-line
systems are designed to detect intrusions while they
are happening, thereby allowing for quicker interven-
tion. On-line IDSs are computationally very expensive
because they require continuous monitoring. Decisions
need to be made quickly with less data and therefore
they are not as reliable.

Several IDSs that employ neural networks for on-line
intrusion detection have been proposed (Debar et al.
1992: Fox et al. 1990). These systems learn to pre-
dict the next command based on a sequence of previ-
ous commands by a specific user. Through a shifting
window, the network receives the w most recent com-
mands ,as its input. The network is recurrent, that is,
part of the output is fed back as the input for the next
step: thus, the network is constantly observing the new
trend and "forgets" old behavior over time. The size
of Ihe window is an important parameter: If w is too
small, there will be many false positives; if it is too
big, the network may not generalize well to novel se-
quences. The most recent of such systems (Debar et al.
1992) can predict the next command correctly around
80¢~. of the time, and accept a command as predictable
(among the three most likely next commands) 90%
t he t ime.

One problem with the on-line approach is that most
of the effort goes into predicting the order of com-
mands. In many ca.ses, the order does not matter
much. but the distribution of commands that are used
is revealing. A possibly etfective approach could there-
fore be to collect statistics about the users’ command
usage over a period of time, such ,as a day, and try to

recognize the distribution of commands as legitimate or
anomalous off-line. This is the idea behind the NNID
system.

The NNID System
The NNID anomaly intrusion detection system is based
on identifying a legitimate user based on the distribu-
tion of commands she or he executes. This is justifiable
because different users tend to exhibit different behav-
ior, depending on their needs of the system. Some use
the system to send and receive e-mail only, and do not
require services such as programming and compilation.
Some engage in all kinds of activities including editing,
programming, e-mail, Web browsing, and so on. How-
ever, even two users that do the same thing may not
use the same application program. For example, some
may prefer the "vi" editor to "emacs", favor "pine"
over "elm" as their mail utility program, or use "gcc"
more often than "cc" to compile C programs. Also, tile
frequency with which a command is used varies from
user to user. The set of commands used and their
frequency, therefore, constitutes a ’print’ of the user,
reflecting the task performed and the choice of appli-
cation programs, and it should be possible to identify
the user based on this information.

It should be noted that this approach works even if
some users have aliases set up as shorthands for long
commands they use frequently, because the audit log
records the actual commands executed by the system.
Users’ privacy is not violated, since the arguments to a
command do not need to be recorded. That is, we may
know that a user sends e-mail five times a day, but we
do not need to know to whom the mail is addressed.

Building NNID for a particular computer system
consists of the following three phases:

1. Collecting training data: Obtain the audit logs for
each user for a period of several days. For each day
and user, form a vector that represents how often
the user executed each command.

2. Training: Train the neural network to identify the
user based on these command distribution vectors.

3. Performance: Let the network identify the user for
each new command distribution vector. If the net-
work’s suggestion is different from the actual user,
or if the network does not have a clear suggestion,
signal an anomaly.

The particular implementation of NNID and the envi-
ronment where it was tested is described in the next
section.

Experiments
The NNID system was built and tested on a machine
that serves a particular research group at the Depart-
ment of Electrical and Computer Engineering at tile
University of Texas at Austin. This machine has 10
total users; some are regular users, with several other

73

as awk bc bibtex calendar cat chmod comsat c
cut cvs date df diff du dvips egrep eFm

cpp
emacs

expr fgreI~ filter find finger fmt from t tp gcc db

~ostview i~maxe
~

i~zip hostname id if~o.nfi.g tspell ~t
tess ~ore~ lprm ls machine mail make,pr

man mesg metamail dir more movemail mpage mt mv netscape
netstat nm ob~dump perl p~p ping ps pwd rcp res~ze
rm rsh sea sendmail sort strip stty tml tar
tcsh tee test tgif to tput tr tt

w~ereis
uname vacation

xcalc x~’vi xhostvi virtex w wc xbiff++ xterm

Table 1: The 100 commands used to describe user behavior. The number of times the user executed ,’a,’h
of these commands during the day was recorded, mapped into a nonlinear scale of 11 intervals, and concatenat~.d
into a 100-dimensional input vector, representing the usage pattern for that user for that day.

users logging in intermittently. This platform was cho-
sen for three reasons:

1. The operating system (NetBSD) provides audit trail
logging for accounting purposes and this option had
been enabled on this system.

2. The number of users and the total number of com-
mands executed per day are on an order of mag-
nitude that is manageable. Thus, the feasibility of
the approach could be tested with real-world data
without getting into scalability issues.

3. The system is relatively unknown to outsiders and
the users are all known to us, so that it is likely
that the data collected on it consists of normal user
behavior (free of intrusions).

Data was collected on this system for 12 days, re-
sulting in 89 user-days. Instead of trying to optimize
the selection of features (commands) for the input,
we decided to simply use a set of 100 most common
commands in the logs (listed in Table 1), and let the
network figure out what information was important
and what superfluous. Intelligent selection of features
might improve the results some but the current ap-
proach is easy to implement and proves the point.

In order to introduce more overlap between input
vectors, and therefore better generalization, the num-
ber of times a command was used was divided into in-
tervals. There were 11 intervals, non-linearly spaced,
so that the representation is more accurate at lower
frequencies where it is most important. The first in-
terval meant the command was never used; the second
that it was used once or twice, and so on until the
last interval where the command was used more than
500 times. The intervals were represented by values
from 0.0 to 1.0 in 0.1 increments. These values, one
for each command, were then concatenated into a 100-
dimensional command distribution vector (also called
user vector below) to be used as input to the ,leural
network.

The standard three-layer backpropagation architec-
ture was chosen for the neural network. The idea was
to get results on the most standard and general ar-
chitecture so that the feasibility of the approach could
be demonstrated and the results would be easily repli-
cable. More sophisticated architectures could be used

and they would probably lead to slightly better result s.
The input layer consisted of 100 units, representing ~h,,
user vector; the hidden layer had 30 units and the or,t-
put layer 10 units, one for each user. The network was
implemented in the PlaNet Neural Network sinmlat,,r
(Miyata 1991).

Results

To avoid overtraining, several training sessions were
run prior to the actual experiments to see how many
training cycles would give the highest performa,wc.
The network was trained on 8 randomly chosen days of
data (65 user vectors), and its performance was tested
on the remaining 3 days (24 vectors) after epochs :10.
50, 100, 200, and 300, of which 100 gave the best per-
formance. Four splits of the data into training aml
testing sets were created by randomly picking 8 days
for training.

The resulting four networks were tested in two t,~sks:

1. Identifying the user vectors of the remaining 3 days.
If the activation of the output unit representing
the correct user was higher than those of all other
units, and also higher than 0.5, the identification was
counted as correct. Otherwise, a false positive was
counted.

2. Identifying 100 randomly-generated user vectors. If
all output units had an activation less than 0.5. the
network was taken to correctly identify the vector as
an anomaly (i.e. not any of the known users in the
system). Otherwise, the most highly active outp~,t
unit identifies the network’s suggestion. Since all
intrusions occur under one of the 10 user accounts.
there is a 1/10 chance that the suggestion would
accidentally match the compromised user accol,nt
and the intrusion would not be detected. Therefore.
1/10 of all such cases were counted as false negatiw,s.

The second test is a suggestive measure of the accu-
racy of the system. It is not possible to come up wit h
vectors that would represent a good sampling of actual
intrusions; the idea here was to generate vectors where
the values for each command were randomly drawn
from the distribution of values for that command i,l
the entire data set. In other words, the random test

74

- ’ 3 4 b / U J
OJtPut.

) " 2 3 4 5 6 7 8
O.Itl~t

¯ I
02tl~t

Im I

OJt~t

J. ¯

)3~3435703
02L~L

I

3.23456783
OJt~t

..... Imoe

Output

0 t 2 34 56 ? 89

Ill ¯ ’1

OUtput

, , ¯ ¯

0 L ..2 " 4 ~ I~ 7 ~
O~tp~t

0 J. 2 3 4 5 6 7 8 9
Output

........ Il

V "1 ~’ 0 4 ~3 b ¯ t; ~1
Oul~ut

I. .m- ¯

0 1 2 3 4 5 6 7 E 9
OL* rut

¯ . . o . ¯

0 1 2 ~ 4. 5 6 ¯ E ~J
OubFut

Ou~,FUt

0 1 P. 3 4 ~ U ¯ IE ~]
Out, l-Ul.

¯ ¯ ¯ . .

0 £ 2 3 45 6 7 E S
Out.put

O~pu~

1........ I
(12 3 ~- 5 6 7 8

O~pu:

C 1 2 5 c ~ ~ 7 Y
O,.~,pu;

t...... o . .

C 1 2 ~ s ~ 6 / 8 9
Out.pu~,

........
II1

Oubpu,

t.......

¢ I 2 3 ,- 5 6 ?’ 8 9
Output,

Figure 1 : User identification with the NNID Network. The output layer of NNID is shown for each of the 24 test
vectors ia one of the .! splits tested. The output units are lined up from left to right, and their activations are represented
h.v lhe size of Che squares. In this split there were two false alarms: one is displayed in the top right with activation 0.01,
aml ouc ill the seco,d row from lhc bottom, second column from the left with 0.35. All the other test vectors are identified
c:orrectl.v wi(h nctivation higher than 0.5.

75

vectors had the same first-order statistics as the legit-
imate user vectors, but had no higher-order correla-
tions. Therefore they constitute a neutral but realistic
sample of unusual behavior.

All four splits led to similar results. On average,
the networks rejected 63% of the random user vectors,
leading to an anomaly detection rate of 96%. They
correctly identified the legitimate user vectors 93% of
the time, giving a false alarm rate of 7%.

Figure 1 shows the output of the network for one
of the splits. Out of 24 legitimate user vectors, the
network identified 22. Most of the time the correct
output unit is very highly activated, indicating high
certainty of identification. However, the activation of
the highest unit was below 0.5 for two of the inputs,
resulting in a false alarm.

Interestingly, in all false alarms in all splits, the
falsely-accused user was always the same. A closer
look at the data set revealed that there were only 3
days of data on this user. He used the system very
infrequently, and the network could not learn a proper
profile for him. While it would be easy to fix this
problem by collecting more data in this case, we be-
lieve this is a problem that would be difficult to rule
out in general. No matter how much data one collects,
there may still not be enough for some extremely infre-
quent user. Therefore, we believe the results obtained
in this rather small data set give a realistic picture of
the performance of the NNID system.

Discussion and Future Work
An important question is, how well does the perfor-
mance of NNID scale with the number of users? Al-
though there are many computer systems that have
no more than a dozen users, most intrusions occur
in larger systems with hundreds of users. With more
users, the network would have to make finer distinc-
tions, and it would be difficult to maintain the same
low level of false alarms. However, the rate of detect-
ing anomalies may not change much, as long as the
network has learned the patterns of the actual users
well. Any activity that differs from the user’s normal
behavior would still be detected as an anomaly.

Training the network to represent many more users
may take longer and require a larger network, but it
should be possible because the user profiles share a lot
of common structure, and neural networks in general
are good at learning such data. Optimizing the set of
commands included in the user vector, and the size of
the value intervals, might also have a large impact on
performance. It would be interesting to determine the
curve of performance versus the number of users, and
also see how the size of the input vector and the gran-
ularity of the value intervals affect that curve. This is
the most important direction of future work.

Another important issue is, how much does a user’s
behavior change over time? If behavior changes dra-
matically, NNID must be recalibrated often or the

number of false positives would increase. Fortunately
such retraining is easy to do. Since NNID parses daily
activity of each user into a user-vector, the user profile
can be updated daily. NNID could then be retraitwd
periodically. In the current system it takes only about
90 seconds and would not be a great burden on th,,
system.

Conclusion
Experimental evaluation on real-world data shows that
NNID can learn to identify users simply by what com-
mands they use and how often, and such an ident ifi~’a-
tion can be used to detect intrusions in a network com-
puter system. The order of commands does not lw~,,l
to be taken into account. NNID is easy to train aml
inexpensive to run because it operates off-line on daily
logs. As long as real-time detection is not required,
NNID constitutes a promising, practical approach ~o
anomaly intrusion detection.

Acknowledgements

Special thanks to Mike Dahlin and Tom Ziaja for feed-
back on an earlier version of this paper, and to Jim
Bednar for help with the PlaNet simulator. This re-
search was supported in part by DOD-ARPA con-
tract F30602-96-1-0313, NSF grant IRI-9504317, and
the Texas Higher Education Coordinating board grant
ARP-444.

References
Debar, H., Becker, M., and Siboni, D. (1992). A neural

network component for an intrusion detection sys-
tem. In Proceedings of the 1992 IEEE Computer
Society Symposium on Research in Computer .~’~-
curity and Privacy, 240-250.

Denning, D. E. (1987). An intrusion detection model.
IEEE Transactions on Software Engineering, SE-
13:222-232.

Fox, K. L., Henning, l:t. 1~., l~eed, J. H., and Simonian.
R. (1990). A neural network approach towards in-
trusion detection. In Proceedings of the 13th ,V~l-
tional Computer Security Conference, 125-134.

Frank, J. (1994). Artificial intelligence and intrusion
detection: Current and future directions. In Pro-
ceedings of the National 17th Computer Sec~lrttt/
Conference.

Garvey, T. D., and Lunt, T. F. (1991). Model-based
intrusion detection. In Proceedings of the 14th .V,t-
tional Computer Security Conference.

Miyata, Y. (1991). A User’s Guide to PlaNet t; r-
sion 5.6 - A Tool for Constructing, Running, mtd
Looking in to a PDP Network. Computer Sci-
ence Department, University of Colorado, Boul-
der, Boulder, CO.

76

.Mukherjee, B., Ileberlein, L. T., and Levitt, K. N.
(199,1). Network intrusion detection. IEEE Net-
work. 26 -.i 1.

Porr~, P. A.. llgun, K., and Kemmerer, R. A. (1998).
State transition analysis: A rule-based intrusion
detection approach. IEEE Transactions on Soft-
ware Engineering, SE-21:181-199.

Teng, II. S., Chen. K., and Lu, S. C. (1990). Adap-
tive real-! ime anomaly detection using inductively
generated sequential patterns. In Proceedings of
th~ 1990 IEEE Srlmposimn on Research m Com-
Imtcr ,’,’~curzt~l and PrlvactI, 278-284.

77

