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Abstract
While numerous approaches have been proposed to prevent stack
overflows, heap overflows remain both a security vulnerability and
a frequent source of bugs. Previous approaches to preventing these
overflows require source code or can slow programs down by a
factor of two or more. We present HeapShield, an approach that
prevents all library-based heap overflows at runtime. It works with
arbitrary, unaltered binaries. It incurs no space overhead and is
efficient, imposing minimal impact on real application performance
(2% on average).

1. Introduction
The C library contains a host of library calls that present well-
known security vulnerabilities. The most prominent culprit is
strcpy, which overflows the destination buffer if the source string
is too large. Numerous other examples exist, including gets,
sprintf, and memcpy.

Because of the danger inherent in the use of these unsafe library
calls, a number of safer alternatives have been added to the C
library. These variants typically include the letter “n” in their name
(e.g., strncpy) and require an argument that gives the maximum
amount of data copied into the target buffer. Unfortunately, these
variants do little to prevent overflows, because programmers can
simply supply incorrect values.

Preventing buffer overflows has been the object of substan-
tial recent research efforts, especially with the goal of preventing
stack-smashing attacks. However, buffer overflows can also be used
to attack the heap, and approaches suitable for preventing stack-
smashing, such as canaries or shadow stacks, are ineffective against
heap overflows. The current state-of-the-art approach prevents heap
overflows but degrades performance by up to 2.4X.

This paper presents a memory-management based approach
that efficiently prevents all library-based heap overflows. The key
insight we exploit in this paper is that it is possible to employ
an alternative heap layout to track object sizes “for free”. This
heap layout, described in detail in Section 3.1, differs substantially
from that used by the Linux and Windows allocators. It has been
used in the programming languages community to provide type
information for LISP objects with low overhead [15], to support
conservative garbage collection [11], and as the foundation for
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scalable multiprocessor memory management [6, 21]. It has also
been used as the basis for the default memory manager in the
FreeBSD operating system [19].

We show here how we can apply this heap layout to ensure that
library functions never cause heap overflows. Our approach incurs
no space overhead beyond that used to manage the heap because it
relies only on data structures already in place to support ordinary
memory allocation operations (malloc and free). We use this
heap layout to efficiently implement a function that computes the
remaining size of any allocated buffer, and then replace all unsafe
library functions with safe variants that silently truncate overflows.

HeapShield imposes no perceivable performance impact on
these library functions, and it adds no overhead to any other as-
pect of program execution. It is also orthogonal to techniques that
protect against stack overflow and so could be combined with them,
although we do not explore that here.

The remainder of this paper is organized as follows. Section 2
explains the difficulties of efficiently preventing heap overflows
at the language level. Section 3 describes our approach in detail.
Section 4 presents experimental results across microbenchmarks
and actual applications. Finally, Section 5 discusses related work
and Section 6 concludes.

2. Overview
Library calls like strcpy are unsafe because they do not check
whether copying the source string would overflow the destination
buffer. The reason that standard library implementations do not
perform such checking is that it can be prohibitively expensive to
do so, as we discuss below.

In particular, given any pointer, we need to be able to obtain the
following information in order to prevent overflows:

1. Determine whether the pointer lies in the heap.

2. Find the position of this pointer inside an allocated object.

3. Compute the available space remaining from this pointer to the
end of its allocated space.

Unfortunately, popular memory managers do not provide any
ready way to obtain this information. The memory managers used
by both Windows and Linux are freelist-based: they manage freed
space on linked lists, and return pointers to the allocated objects.
We focus here on the Lea allocator [20], which forms the basis
of the Linux (GNU libc) allocator and is representative of freelist-
based memory allocators.

As Figure 1 shows, the Lea allocator adds a header to each
allocated object that contains its size and the size of the previous
object. This metadata allows the Lea allocator to efficiently place
freed objects on the appropriate free list (organized by size), and to
coalesce adjacent freed objects into a larger chunk.
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Figure 1. A fragment of a freelist-based heap, as used by Linux and Windows. Object headers precede each object, making it easy to free
and coalesce objects, but provide no way to locate objects given an interior pointer.

However, this heap layout makes it impossible to efficiently or
reliably locate objects given an interior pointer. One could perform
a linear scan of memory searching for the metadata, which could
prove quite costly. Even then, there is no sure way to distinguish
between object metadata and the contents of the object itself.

Given these difficulties, the only way to track this information
is to build an auxiliary data structure. Hauswirth and Chilimbi’s
address tree [17] is one recent example. This binary tree, despite
its relative space efficiency versus na ive approaches, imposes both
space costs (as much as 47%) and substantial performance over-
head, requiring up to 32 tree traversals for each lookup. Similarly,
Avijit et al.’s libsafePlus [2] uses a red-black tree to accomplish the
same objectives, but this increases the cost of memory allocation
operations by up to 7X, degrading application performance by up
to 2.4X on one application.

In general, any auxiliary approach imposes a performance
penalty on malloc and free operations (which are frequent),
rather than placing overhead on far less frequent calls to functions
like strcpy. Also, in the context of multi-threaded programs, it
may become a scalability bottleneck.

3. Our Approach
Our approach eliminates heap overflows by building on an alter-
native to freelist-based allocation. We first describe the heap orga-
nization we employ (Section 3.1), present the implementation of
a function that efficiently computes remaining space in any heap
object (Section 3.2), and show how to use this function to prevent
library-based overflows (Section 3.3).

3.1 Heap Organization
We use a heap organization known as segregated-fits BiBOP-style.
Figure 2 provides a pictorial representation of part of such a heap.
The allocator divides memory into chunks that are a multiple of the
system page size (typically 4K). This organization into pages gives
rise to the name “Big Bag of Pages”, or “BiBOP” [15]. BiBOP
allocators were originally used to provide cheap access to type data
for LISP, but they are also suitable for general-purpose allocation.

In addition to dividing the heap into pages, we require that all
objects in the same chunk have the same size — in other words,
objects of different sizes are segregated from each other. We store
the object size and other metadata either at the start of each chunk,
or, as shown here, in a page directory table off to the side. By
aligning chunks to page boundaries, the allocator can locate the
metadata for individual pages in constant time. Masking off the
low-order bits of a pointer to the start or inside the object yields an
index into the page directory.

The page directory indicates whether the given page is dedicated
to small objects (“chunk”), if it is the start (“start”) or another
part (“follow”) of a range of pages. It also contains information
indicating whether the given page is unmapped, and points to the
free list of objects inside a chunk.

What we describe above corresponds to the structure of the BSD
allocator, known as PHKmalloc [19], but it is similar to the heap
layout of the Hoard scalable memory allocator and Maged’s non-
blocking variant [7, 5, 21], as well as the Boehm-Demers-Weiser
conservative garbage collector [11]. As we describe in Section 3.2,
this BiBOP-style heap organization allows us to efficiently prevent
library-based heap overflows. In addition, it has numerous advan-
tages over freelist-based schemes:

• Lower per-object overhead. In the Lea allocator, an eight-byte
object is accompanied by an eight-byte object header, doubling
space consumption. By contrast, in the BiBOP organization,
one header suffices for an entire pageful of objects, adding just
1% space overhead to these small objects.

• Eliminates external fragmentation. Freelist allocators typi-
cally allow a region of memory to be allocated to objects of
different sizes. Unforuntately, a small allocated object in the
middle of a range of free memory fragments this space. Segre-
gating object sizes ensures that free space is never broken into
smaller pieces, thus preventing external fragmentation. Inter-
nal fragmentation — unused space inside allocated objects —
remains a possibility, although it is possible to bound this by
choosing appropriate size classes.

• Reduces virtual memory impact. In a virtual memory man-
agement environment, a BiBOP-style allocator can reduce its
working set size. Because it knows when an entire pageful of
objects is free, it can invoke the madvise call to allow the vir-
tual memory manager to reclaim that page (an equivalent exists
on Windows operating systems). This ability reduces an appli-
cation’s physical memory requirements and thus can dramati-
cally reduce paging costs [13, 19].

3.2 Computing Available Space
Figure 3 presents the pseudo-code for the key function we require.
This function, called remainingSize, takes a pointer as an
argument, and returns the remaining space — that is, the number
of bytes until the end of the allocated area. We describe below how
to implement this operation efficiently in the context of a BiBOP-
style allocator; Section 3.3 next shows how this information can be
used to prevent library-based heap overflows.

The remainingSize function first checks its argument for
validity. If it is not on the heap, it returns -1. If the object is
already freed or is in an unmapped area, it returns 0. Returning zero
prevents inadvertent segmentation violations that would be caused
by writing into an unmapped page.

The next step is to find the page information structure corre-
sponding to this pointer (maintained in the array page dir). This
page directory points either to a large object that consists of a num-
ber of pages, or to a single page. If the object is large, the function
iterates through the directory until it finds the object’s last page.
The size is then just the number of pages traversed minus the offset
of the pointer in the page. If the pointer is inside a small object, it
just returns the object size minus the offset within the object.
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Figure 2. A fragment of a segregated-fits BiBOP-style heap, the basis of the approach presented here. Memory is allocated from page-
aligned chunks, and metadata (size, type of chunk) is maintained in a page directory. The dotted lines indicate the list of free objects inside
the chunk.

size_t remainingSize (void * ptr) {
// Find index into metadata table.
index = ptr2index(ptr);
if (index not on heap)
return -1;

if (index to free space)
return 0;

// Find page info.
info = page_dir[index];
// Compute size remaining.
if (range of pages) {
i = total number of pages;
space = i * pagesize;
return space - object offset;

} else {
space = info->size;
return space - object offset;

}
}

Figure 3. Pseudo-code for computing remaining size.

Note that this function imposes no space overhead and is ef-
ficient. The implementation described here requires no additional
bookkeepping because it uses only the existing data structures in-
side the allocator. For small objects (under 2K), it operates in con-
stant time. For larger objects, it runs in time proportional to the
number of pages remaining in the object. For example, computing
the size of a 128K object given a pointer to its start requires just 32
directory lookups.

The implementation described here is in the context of PHK-
malloc. However, we believe it should be similarly straightforward
to apply to similar allocators such as Hoard and the BDW conserv-
ative garbage collector.

3.3 Preventing Library-Based Overflows
We are now in a position to alter the definitions of the C library
functions. Our library operates by interposition (via LD PRELOAD),
and replaces all unsafe functions with checked variants.

Most functions operate similarly to the implementation of
strcpy, presented in Figure 4. Each function checks to make
sure it has a pointer to the actual library implementations, and then
computes the remaining size available in any destination pointer.
If the size is -1, then the target is on the stack, and any existing
stack protection technique could be employed here (e.g., libsafe).
otherwise, the remaining size is used either as the total or, in the
case of strncpy, the maximum amount to be copied.

4. Experimental Results
In this section, we compare the runtime performance of HeapShield
to that of the default Linux allocator (based on version 2.7 of

char * strcpy (char *dest, const char *src) {
if (not initialized)
initialize function pointers;

sz = remainingSize (dest);
if (sz == -1) { // not on heap
// could check for stack overflow here.
return original_strcpy (dest, src);

} else {
s = strlen(src) + 1;
n = (s < sz) ? s : sz;
return original_strncpy (dest, src, n);

}
}

Figure 4. Pseudo-code for strcpy.

the Lea allocator) and to libsafePlus [2] 1.6.0, a system that also
prevents library-based heap overflows.

Our experimental platform is a Linux system running version
2.4.20 of the kernel. It is equipped with two Intel Xeon proces-
sors, both running at 3.06GHz with hyperthreading enabled. Each
processor is equipped with a 512K L2 cache, and the system has
three gigabytes of RAM. All programs are compiled at the highest
optimization level (-O3) with g++ version 4.0.2. All experiments
are performed on a quiescent system, and results are the means of
three runs (after one warm-up).

We run two sets of experiments. The first (Section 4.1) is a
microbenchmark that isolates the overhead of our approach com-
pared with the runtime performance of both libsafePlus and the
Linux allocator, which provides no protection from heap over-
flows. The second suite (Section 4.2) uses benchmark applications
that exercise the memory management system intensively. These
benchmark applications have been used in the memory manage-
ment community to measure the performance of memory man-
agers [8, 12, 14, 18]. While these benchmarks are not necessarily
typical of application behavior, they emphasize the overhead of any
approach that adds cost to memory operations.

Table 1 describes these benchmarks in more detail, along with
their inputs. We use the largest available benchmark inputs for each
program, including one of the SPEC2K reference inputs for perl.

4.1 Microbenchmarks
To compare the bookkeeping overhead of our approach to libsafe-
Plus, we conduct an experiment similar to that presented by Avijit
et al˙ [2]. We wrote a synthetic benchmark that repeatedly (1024
times) allocates a given number of eight-byte objects, and then
deallocates them all.

Figure 5(a) presents the results. The cost of allocating objects
grows linearly with both HeapShield and the Linux allocator. How-
ever, because libsafePlus maintains a red-black tree to track ob-
ject sizes, its cost grows quadratically, raising its complexity to
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(b) memcpy overhead (note the x-axis is log-scale). libsafePlus is up
to 3.3x more expensive than directly calling memcpy, although this
overhead decreases as object sizes increase. HeapShield matches the
Linux memcpy performance, regardless of object size.

Figure 5. Performance overhead for microbenchmarks (allocation cost and memcpy).
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Figure 6. Performance comparison against the Linux allocator,
libsafePlus, and HeapShield. While libsafePlus degrades perfor-
mance by 45% on average, HeapShield’s average overhead is just
2.4%.

O(n2 logn). Our approach avoids heap overflows without altering
the asymptotic complexity of the instrumented program.

We next run a microbenchmark to measure the cost of avoiding
heap overflow in library calls. This benchmark performs 1,000,000
memcpy operations of a given size. Figure 5(b) presents the over-
head per byte, normalized to the Lea allocator. The overhead of
using libsafePlus is substantial for small object copying, costing as
much as 3.3X per byte to copy 10 bytes, and 2.75X to copy 100
bytes. Our approach and the Linux allocator achieve similar perfor-
mance regardless of the number of bytes copied.

4.2 Memory-Intensive Benchmarks
We next measure runtime performance across the memory-intensive
benchmarks described in Table 1. Figure 6 presents these results,
normalized to the Linux allocator.

In general, HeapShield nearly matches the performance of the
Linux allocator, which provides no protection from heap overflows.
Our system runs no more than 10% slower (for cfrac), and as
much as 3% faster (for espresso); the geometric mean is a
slowdown of 2.4%. Notice that this difference in running time
is almost entirely due to differences in the underlying memory
allocation mechanism, rather than library checks.

However, libsafePlus imposes significant performance overhead
for several of the benchmarks. On average, libsafePlus degrades
performance by 45% relative to the Linux allocator. This degra-
dation is especially high for three of the benchmarks: 84% for
cfrac, 44% for p2c and 80% for roboop.

5. Related Work
There is extensive work on preventing or thwarting buffer over-
flows. We discuss related work in static analysis techniques used
in compiler and language approaches (Section 5.1), and dynamic
techniques (Section 5.2), which are most similar to the work pre-
sented here.

5.1 Static Approaches
Static analysis techniques can catch a broad range of errors, elim-
inating the possibility of overflows altogether [29, 3, 30, 1, 22].
Compiler-based approaches are effective but require application
source code, are usually restricted to a subset of C (and not C++),
and lead to a substantial increase in execution time. The current
state of the art is the CRED compiler by Ruwase and Lam [27],
which accomodates most of the C language. Full buffer checking
yields slowdowns of up to 12X, although checking strings reduces
the maximum slowdown to slightly more than 2X.

Rinard et al. present a system built on Ruwase and Lam’s CRED
compiler that, like our approach, silently drops heap overflows [25].
It is more general than HeapShield, preventing all illegal writes, but
suffers from the same performance problems as CRED.

An alternative approach does not avoid heap overflows but uses
randomization or obfuscation to make them difficult to exploit [10,
9]. Bhatkar et al. report from 1.12 to 3.37x slowdown in program
execution, along with an increase in heap usage ranging from 1x to
5.51x.

5.2 Dynamic Techniques
Several tools, such as Purify [16] and Valgrind [23, 28] can find
all buffer overflows at runtime, but their overhead (2-25X) makes
them suitable primarily for debugging. Newsome and Song present
a dynamic taint analysis tool that detects overwrites using a binary
rewriting technique [24]; however, it operates on top of Valgrind
and so incurs similar overhead.

It is possible to detect heap overflows after the fact, and then
trigger error-handling code. This approach was first proposed by



Benchmark Description Input
cfrac Factors arbitrary-length numbers a 36-digit number
espresso optimizer for programmable logic arrays largest.espresso
lindsay Hypercube simulator script.mine
roboop Robotics simulator supplied
p2c Pascal-to-C translator mf.p
perl Perl interpreter perfect.in

Table 1. Memory-intensive benchmark application suite.

Robertson et al. [26], and has subsequently been implemented in
the newest version of the Lea allocator (version 2.8.X).

The most related work to that presented here is libsafePlus [2].
Unlike our approach, which silently truncates overflows and so al-
lows execution to continue, libsafePlus aborts execution when it de-
tects a library-based heap overflow. It uses a red-black tree to track
objects allocated from malloc. As Sections 4.1 and 4.2 show, this
approach adds considerable overhead to malloc and free, in-
creasing its asymptotic complexity and degrading application per-
formance by up to 84%.

libsafe intercepts library calls to prevent stack-smashing at-
tacks [4]. This approach is orthogonal and complementary to the
work presented here.

6. Conclusion
This paper presents HeapShield, an approach that avoids all library-
based heap overflows with minimal overhead. It uses an alternative
heap layout, known as segregated-fits BiBOP-style, that speeds the
calculation of object sizes. It then provides alternative definitions of
unsafe C library functions that silently truncate any heap overflows.
Our approach operates on unaltered programs, requiring no source
code or compiler support. It also nearly matches the efficiency of
uninstrumented applications, running on average just 2.4% slower
(ranging from 3% faster to 10% slower).

We believe that the practicality of HeapShield’s approach means
it can be immediately and broadly adopted, thus marking the end
of the road for library-based heap overflows. In addition to prevent-
ing security vulnerabilities, it can eliminate a notorious source of
programming errors. It can be used directly, or straightforwardly
adapted to extend similar protection to high-performance memory
allocators like Hoard and to the Boehm-Demers-Weiser conserv-
ative garbage collector. Finally, because its heap protection is or-
thogonal to approaches that provide stack-based protection, our ap-
proach can be combined with these to significantly enhance the re-
liability and security of deployed applications.
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