

1

FROM RING3 TO RING0: EXPLOITING THE

XEN X86 INSTRUCTION EMULATOR
Andrei Vlad Luțaș

Bitdefender
vlutas@bitdefender.com

ABSTRACT

While a VMM can provide a considerable level of security by isolation, it is generally true that by increasing the

code-base that runs on a given host system one also increases the attack surface. Instruction emulators are a

critical part of any hypervisor, as they provide the means to virtualize certain devices or handle certain types of

faults (such as EPT violations or Invalid Opcode Exceptions). However, creating an emulator is not an easy task, and

as with any other piece of software, any issue in the emulation of an instruction might be exploited by an attacker

in various ways. If, for example, the emulator fails to properly validate an instruction as precisely as a physical CPU

does, an attacker might leverage this in order to gain elevated privileges or cause denial of service. This is an

important issue especially, since such problems can be successfully exploited on virtually any x86 operating

system. The Xen hypervisor has several vulnerabilities involving the x86 emulator, due to the lack of validation of

privilege, which enables the emulation of several sensitive instructions from ring-3: LMSW, HLT, INT, LIDT, LGDT.

Some of them have a minor effect (LMSW, HLT), others can cause denial of service (INT) and some facilitate

escalation of privileges (LIDT, LGDT) by leading to arbitrary code execution in ring-0. Additionally, a method to

bypass Intel SMEP is presented, in the context of the discovered vulnerabilities.

INTRODUCTION

Vulnerabilities in VMMs (Virtual Machine Monitors) are not something new. Hyper-V, Xen or VMware all had

vulnerabilities at some point (and they probably still do – they’re yet to be discovered). Xen Security Advisory (Xen

Security Advisory, n.d.) and VMware Security Advisories (VMware, n.d.) contain a complete list of vulnerabilities

identified either directly in the VMM or in other components, while a good example for Hyper-V is MS13-092 (Luft,

n.d.). Some vulnerabilities may be used to cause a denial of service, while others can be used to gain elevated

privileges. In this whitepaper we will describe two vulnerabilities identified in the Xen hypervisor, which allow for

denial of service and elevation of privileges inside the guest. In addition, a method to bypass SMEP in the context

of the presented vulnerabilities is disclosed.

XEN X86 INSTRUCTION EMULATOR VULNERABILITIES

Two distinct vulnerabilities have been discovered in the Xen x86 instruction emulator, which also affect other

platforms based on it, such as XenServer (tested on XenServer 6.2, build date 2013-10-15, build number 75966c),

XenClient (tested on XenClient 5.1.3), XenClient XT (tested on XenClient XT 3.2.2 Trial, build 132629), Amazon and

perhaps (although not tested) Oracle VM and others. Versions from at least 3.2.x onwards are vulnerable (older

versions have not been tested) to:

2

- Logic errors in software interrupt (INT instruction) handling (XSA-106, CVE-2014-7156)

- Insufficient privilege-validations for HLT, LMSW, LIDT, LGDT instructions (XSA-105, CVE-2014-7155)

LOGIC ERRORS IN SOFTWARE INTERRUPT HANDLING

DETAILS OF THE VULNERABILITY

As part of x86 instruction emulation, sometimes an exception may need to be injected inside the guest (for

example, a page-fault or an invalid-opcode exception). This is accomplished in Xen with the help of the

generate_exception_if macro, which will call the inject_hw_exception callback and, if successful, it will return

X86EMUL_EXCEPTION, which will be returned by x86_emulate. hvm_emulate_one function will also return

X86EMUL_EXCEPTION if an exception of any kind has been generated by the emulator. This in turn will be handled

by the caller by actually injecting the exception by calling hvm_inject_hw_exception. If we take a look at how INT is

handled, we will see the following:

Figure 1: INT instruction handling1

One can see in Figure 1: INT instruction handling that although the inject_sw_interrupt callback is invoked in order

to inject a software interrupt (not a hardware exception), X86EMUL_EXCEPTION is returned in case of success.

Figure 2: Emulation return code interpretation2

The handling of the X86EMUL_EXCEPTION is, however, the same, regardless of the type of event injected (software

interrupt or hardware exception) and is handled by calling hvm_inject_hw_exception causing the injection to be

made as a hardware exception, and not a software interrupt, as it should, as seen in Figure 2: Emulation return

code interpretation.

1
 Xen/arch/x86/x86_emulate/x86_emulate.c, x86_emulate

2
 Xen/arch/x86/hvm/vmx/vmx.c, vmx_vmexit_ud_intercept

3

EVENT INJECTION ON INTEL VT-X

Event injection on Intel VT-x architecture is acomplished by the means of a VMCS field. This field, dubbed

VMCS_EVENT_INJECTION, has the layout descrbibed in Figure 3: VM-Entry Interruption Information field. The most

relevant field for us is the Interrupt type. One can easily see that there are different types for Hardware Exception

(3) and Software Interrupt (4). However, the most important difference is given in the Intel SDM, which states: “If

VM entry is injecting a software interrupt (not redirected as described above) or software exception, privilege

checking is performed on the IDT descriptor being accessed as would be the case for executions of INT n, INT3, or

INTO (the descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest will be in

virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an event with interruption type

external interrupt, NMI, hardware exception, and privileged software exception, or with interruption type software

interrupt and being redirected as described above, do not perform these checks.” This is the important difference

between hardware exception injection and software interrupt injection: while descriptor checks are performed by

the CPU as part of the injection for software interrupts, hardware exception injection will bypass these checks (as if

the exception has been generated as part of the instruction fetch, decode or execution). If a software interrupt is

injected as a hardware exception, the descriptor checks will be bypassed, and thus allowing the attacker to invoke

arbitrary entries inside the IDT.

Figure 3: VM-Entry Interruption Information field3

INSSUFICIENT PRIVILEGE VALIDATIONS

An emulator has the task to handle the emulated instruction as if it would be the CPU himself. One of the most

important tasks is making sure that the instruction can be emulated, given the current context. For example, LIDT

and LGDT will be executed by the CPU only from a ring0 code segment. If a ring3 code segment tries to execute

them, a General-Protection Fault will be generated. The Xen emulator fails to validate the fact that the emulated

LIDT, LGDT (seen in Figure 5: Lack of privilege level validation for the LIDT & LGDT instructions), LMSW or HLT

instruction resides in a ring0 code segment (via the method seen in Figure 4: privilege level validation for the

INVLPG instruction). This missing validation will allow an attacker to execute instructions in a lesser privileged code

segment. While executing HLT will have no interesting effect, the LMSW execution will allow the attacker to

change CR0 bits 1-3. On the other hand, LIDT and LGDT are the most interesting. Being able to load your own

Interrupt Descriptor Table or Global Descriptor Table can easily lead to privilege escalation. Details about how an

attacker can exploit these will be given in the upcoming sections.

3
 Intel SDM, 24-19, Vol. 3C, Table 24-13. Format of the VM-Entry Interruption-Information Field

4

Figure 4: privilege level validation for the INVLPG instruction4

Figure 5: Lack of privilege level validation for the LIDT & LGDT instructions5

FORCING THE EMULATION OF ARBITRARY INSTRUCTIONS

The Xen x86 emulator gets called only in some special cases, such as MMIO accesses. Normally, instructions will

not be emulated, and they will be executed natively by the CPU. However, on Xen, some instructions will always

cause a VM exit and will lead to the emulator invocation. Such an instruction is UD2, which causes an Undefined-

Opcode Exception. This will be handled by calling vmx_vmexit_ud_intercept, which will eventually call the

emulator, as seen in Figure 6: Invalid-Opcode exception handling in Xen and Figure 7: Emulator invocation for

Invalid-Opcode exception.

Figure 6: Invalid-Opcode exception handling in Xen6

4
 Xen/arch/x86/x86_emulate/x86_emulate.c, x86_emulate

5
 Xen/arch/x86/x86_emulate/x86_emulate.c, x86_emulate

6
 Xen/arch/x86/hvm/vmx/vmx.c, vmx_vmexit_handler

5

However, simply being able to force the emulation of a small subset of encodings is not enough, as we need to

emulate some specific instructions. Therefore, we need a way to trick the hypervisor into thinking that a #UD took

place, and in fact trigger the emulation of one of the vulnerable instructions instead. This is rather trivial, if the

guest VM has at least 2 virtual CPUs. If one VCPU triggers a #UD, a VM-Exit will be generated, which will be

handled by the hypervisor, and, eventually, it will call the emulator. If another VCPU maliciously overwrites the

instruction that caused the #UD with another instruction exactly after the VM-Exit but before the emulator gets

called, it might fool the emulator into emulating something else. The synchronization between the two VCPUs can

be easily done using a barrier, and although it will fail sometimes due to the fact that interrupts might interfere

with our synchronization, it will succeed enough times to pose serious problems. Example assembly code can be

seen in Figure 8: Assembly code of two threads forcing the emulation of LIDT. The first thread initially overwrites

byte 1 of the LIDT instruction with 0x0B (LIDT is encoded 0x0F 0x01 followed by the mod r/m while UD2 is encoded

0x0F 0x0B) thus forcing a #UD. The second thread restores byte 1 of the original instruction, thus replacing the

UD2 with the original LIDT [rax].

Figure 7: Emulator invocation for Invalid-Opcode exception7

7
 Xen/arch/x86/hvm/vmx/vmx.c, vmx_vmexit_ud_intercept

6

Figure 8: Assembly code of two threads forcing the emulation of LIDT

EXPLOITING THE VULNERABILITIES

INT (SOFTWARE INTERRUPT)

The INT instruction can be executed at any privilege level. It has only one immediate operand which is always 8

bits in size and encodes the IDT entry that gets invoked (see the description of the LIDT vulnerability for more

details about the IDT and IDT entries). When INT is executed, the CPU will automatically lookup the desired entry

inside the IDT. If the entry Descriptor Privilege Level is numerically equal or greater to the privilege level at which

the INT was executed than the handler will be called. Otherwise, a General-Protection fault will be generated.

Using the software interrupt vulnerability and the race-condition presented in the previous section, we can cause a

denial of service inside the guest VM. All we need to do is force the emulation of the software interrupt

instruction. If we invoke an unexpected entry (for example, 0x0F, which is reserved), we can cause the guest

operating system to generate a BSOD. While this has not been tested on Linux, it is expected to cause similar

effects (kernel panic).

LMSW (LOAD MACHINE STATUS WORD)

LMSW (Load Machine Status Word) can be executed only when CPL (Current Privilege Level) is 0. This instruction

can modify bits 0, 1, 2 and 3 which stand for PE (Protection Enabled), MP (Monitor Co-Processor), EM (Emulation)

and TS (Task Switched). However, the PE bit can only be set by this instruction – it cannot be reset once it has been

set.

Exploiting the emulation of LMSW will allow the attacker to modify bits 1, 2 and 3 (MP, EM & TS). These bits have

effect on FPU instruction execution. Using certain combinations will cause a Device Not Available exception (#NM),

which would be handled by the operating system.

7

HLT (HALT)

HLT will cause the CPU to enter the halt state and cease any instruction execution. The CPU will resume normal

operation once an interrupt is received. Exploiting this in our case can’t do too much damage, as we basically just

halt our exploit code until the next interrupt.

LGDT (LOAD GLOBAL DESCRIPTOR TABLE)

LGDT is a privileged instruction (can be executed only in real-mode or in ring0) that loads the limit and the base

address of the Global Descriptor Table (GDT). The GDT contains special entries, named descriptors. There are

several types of descriptors that may be present inside a GDT:

1. Segment descriptor (either code or data)

2. Local Descriptor-Table descriptor (LDT)

3. Task-State Segment descriptor (TSS)

4. Call-Gate descriptor

5. Task-Gate descriptor

If someone can load its own GDT, it can control what kind of descriptors will be present inside this GDT. A method

to exploit this in order to gain ring0 privilege would be, for example, to load a GDT with, among others, a call gate

to a ring0 handler, which would be located inside the attackers program. By invoking that entry, the designated

routine will get executed in ring0. Care must be taken though because certain entries inside the GDT are very

important (for example, ring0 code & data descriptors, ring3 code & data descriptors, task-state segment) and the

operating system may also have some descriptors that point to certain internal structures (for example, the GS

register points to the KPCR – Kernel Processor Control Region on 64 bit Windows) which should be present in the

malicious GDT. Otherwise, the operating system will simply crash. Exploiting the LGDT instruction to gain ring0

privileges is more challenging than exploiting the LIDT instruction.

LIDT (LOAD INTERRUPT DESCRIPTOR TABLE)

LIDT is a privileged instruction (can be executed only in real-mode or in ring0) that loads the limit and the base

address of the Interrupt Descriptor Table (IDT). Certain special events may take place in the system, currently

running program or the CPU itself that require attention. These events will interrupt the currently executing

instruction by transferring control to a special handler. Among the events that will be handled by calling an entry

that resides inside the IDT are:

 Hardware interrupts (generated by hardware devices such as a network card, a mouse, etc.)

 Software interrupts (generated by software via the INT instruction)

 Hardware exceptions (such as a Page Fault, a General-Protection Fault, a Division by zero, etc.)

 Task switches

Whenever such an event takes place, the CPU will automatically invoke a certain entry inside the IDT (which entry

will be invoked depends on the event). An IDT entry may look different, depending on the entry type. A 32 bit

Interrupt Gate is depicted in Figure 9: Interrupt Gate descriptor:

 Segment Selector – contains the selector of the code-segment that will be loaded when invoking the

entry.

8

 Offset – offset inside the previously loaded code-segment of the handler routine

 DPL – Descriptor Privilege Level required to directly invoke the entry via INT, INT3 or INTO instructions

Figure 9: Interrupt Gate descriptor8

When a software interrupt takes place, the CPU will automatically lookup the desired entry inside the IDT. It will

make sure the caller has enough privilege, it will make several other sanity checks and then it will load the segment

indexed by Segment Selector into the current Code Segment and it will pass control to the routine pointed by the

Offset. Usually, the Segment Selector will select a ring0 (kernel) code segment, in order to make sure that the

routine will execute with maximum privilege.

If someone is able to execute LIDT, he can load his own IDT with his own custom malicious handlers. The

exploitation of the LIDT emulation issue is fairly straight-forward:

1. Build a custom Interrupt Descriptor Table – each IDT handler will be specially crafted so that the segment

selector points to a ring0 segment descriptor (0x08 on x86 Windows and 0x10 on x64 Windows) and the offset

points to a malicious routine inside the attacker’s program.

2. Force the emulation of the LIDT instruction, so that the malicious IDT is loaded – this can be achieved using

the method described in the previous section, Forcing the emulation of arbitrary instructions.

3. Once the malicious IDT has been loaded, the attacker may either choose to wait for an external interrupt

which will trigger the execution of the payload, or it can invoke the payload itself via the software interrupt

instruction, INT. Doing this requires the invoked entry to have DPL = 3, but we control the IDT entries, so this

can be easily achieved during step 1.

4. Execute the ring0 payload – this can do whatever the attacker wants to. The attack may vary from granting

SYSTEM privileges to arbitrary processes to loading and executing other malicious components in ring0.

5. Restore the original IDT – the attacker must save the original IDT (which can be retrieved using the

unprivileged instruction SIDT) before everything can resume to normal. If the event that lead to the invocation

of the IDT entry was external, the attacker must also call the original handler, in order to avoid stability issues

(for example, a missed clock interrupt or a missed inter-processor interrupt may cause significant stability

issues).

Please note that LIDT can be used on both x86 and x64 operating systems in order to exploit this vulnerability. The

main differences are with regards to the layout of the IDT and the IDT descriptors.

8
 Intel SDM, 6-11, Vol. 3A, Figure 6-2. IDT Gate Descriptors

9

BYPASSING SMEP

The exploitation technique presented in the previous section works well on both x86 and x64 systems, but, if

present and activated, Intel Supervisory Mode Execution Prevention will block this attack from being performed

successfully. However, using the LIDT instruction, we can bypass SMEP and successfully gain code execution in

ring0.

ABOUT SMEP

SMEP stands for Supervisory Mode Execution Prevention and was introduced in 2013 with the Intel Ivy Bridge

CPUs. SMEP can be activated by setting bit 20 in CR4. Once activated, SMEP will block any attempt to execute code

located inside a user-mode page from rings other than ring3. This technology is capable of blocking a wide range of

exploitation attempts that rely on executing user-controlled data with ring0 privileges. Our previously described

attack is blocked as well, as it relies on pointing an interrupt handler inside the user program, which lies in user-

pages. When the interrupt handler is invoked, a ring0 code segment will be loaded by the CPU and as soon as it will

try to fetch the first instruction from the malicious handler (located in a user page), a Page-Fault will be generated.

CIRCUMVENTING SMEP

In order to bypass SMEP, we will use the fact that we can point the IDT handlers anywhere, including inside kernel

memory. Therefore, we could completely disable SMEP by clearing bit 20 inside CR4, if we could find and adequate

code sequence inside the kernel. While explicit clearing of the SMEP bit in CR4 is not done anywhere inside the

kernel, there are other interesting sequences. The most suitable for our purpose is the one depicted in Figure 10:

SMEP-Disable gadget. There are several other sequences identical to this one throughout the kernel image, but we

only need one. What the indicated sequence does is load the content of the RCX register inside the CR4 register

and then returns control to whatever lies on the top of the stack.

Figure 10: SMEP-Disable gadget

In order to actually use this to bypass SMEP, we first have to understand two things when it comes to interrupts.

First of all, whenever an interrupt or exception takes place, the CPU will preserve all the general purpose registers

(except for the stack pointer). This means that if inside our user-mode program we have RCX =

0xBDBDBDBDBDBDBDBD, when an interrupt takes place and the interrupt handler will be invoked, RCX will contain

the same value. It is the handler’s duty to save the registers and restore them before returning to the interrupted

code.

Secondly, we have to understand what happens to the stack whenever an interrupt takes place. If the interrupt

takes place while in ring3, a stack switch will occur. The newly loaded stack is the ring0 stack described inside the

current Task State Segment (TSS) or a stack identified by the Interrupt Stack Table (IST) value in the IDT descriptor

(in IA32e mode). After switching the stack due to the interrupt, the CPU will save (in this order) the old SS, old RSP,

Flags, old CS and the interrupted RIP, as shown in Figure 11: Stack Switching. Also, since we’re dealing with a

software interrupt or an external interrupt, no Error Code will be pushed on the stack (which is important for us,

since we want to have a valid RIP at [RSP] instead of an error code).

10

Figure 11: Stack Switching9

Knowing all this, it will now become clearer that a “MOV CR4, RCX/RETN” code sequence is more than enough to

accomplish our task to disable SMEP. All we need to do is make sure that RCX contains a valid CR4 value (with

SMEP disabled) and that we can force an interrupt to be generated. The required steps are:

1. Store a valid CR4 value inside RCX, with SMEP disabled (CR4 contains mainly feature-enable bits and its

value can be determined easily known the operating system and the capabilities of the CPU; however, we

can restore CR4 once we’re inside ring0, so we only need to make sure RCX contains a minimum of

features enabled, such as Physical Address Extension).

2. Load our malicious IDT (using the race-condition described in Forcing the emulation of arbitrary

instructions), which contains handlers that point to the “MOV CR4, RCX/RETN” gadget described in the

previous section

3. Force a software interrupt, which will cause the “MOV CR4, RCX/RETN” sequence to execute; this

sequence does two important things: first of all it disables SMEP by writing CR4, secondly it does a RETN,

which will return to the RIP stored in the top of the current stack. Since the handler executes with ring0

privileges and we are doing a simple RET instead of an IRET, the ring0 code segment will be preserved.

Therefore, the small code gadget will disable SMEP and it will return to the instruction following the

forced software interrupt (inside our code), which will execute with ring0 privileges.

HANDLING MISSED INTERRUPTS

Since we want a certain level of control with regard to when the payload gets invoked, we can point only one

handler to the SMEP-disable gadget, and all other handlers can simply point to an IRET inside the kernel. This way,

no matter what interrupt takes place, it will immediately return. When we are ready to launch the exploit, we will

manually execute INT in order to trigger the vulnerability. This introduces another issue: the interrupts that were

silently discarded must be handled, otherwise the system will hang (an EOI must be performed for each external

interrupt). In order to call the missed interrupt handlers, we can simply parse the Local APIC In Service Register

(ISR) and determine each interrupt that took place but was not handled. We have to invoke all the handlers

backwards (the higher the interrupt number the higher the priority). After we’re done with this, we can freely

execute our payload and do whatever we want in ring0.

9
 Intel SDM, 6-11, Vol. 3A, Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

11

In order to parse the ISR, we have to first determine whether the VCPU is in x2APIC or in xAPIC mode. This can be

achieved by checking bit 10 inside the IA32_APIC_BASE model specific register (address 0x1B). If the VCPU is in

x2APIC mode, the ISR is located in model specific registers range 0x810-0x817. If the VCPU is in xAPIC mode, the

task is a little more difficult, as we have to discover the mapped base address of the local APIC. One way to do this

is by finding a certain code sequence inside the hal that makes use of it. An example is HalpApic1ReadRegister,

illustrated in Figure 12: The HalpLocalApic variable containing the LAPIC mapped base. Once we’ve found this

sequence, we can extract the mapped base of the local APIC from the HalpLocalApic internal variable, used in the

first instruction. Another way to find the mapped base of the local APIC is by using the MmGetPhysicalAddress

routine (which according to MSDN can be called at any IRQL) and do a brute force search until we find the virtual

address that translates to the local APIC physical address (the local APIC physical address can be obtained from

IA32_APIC_BASE MSR).

Figure 12: The HalpLocalApic variable containing the LAPIC mapped base

RETURNING TO RING3

Once we’ve executed the payload, we can return to ring3. As we are still executing with a ring0 stack that already

contains the old SS, RSP, FLAGS, and the ring3 CS (as they were when we triggered the software interrupt), we can

simply push the address of the ring3 handler (remember that the old RIP has been used by the RET inside the

SMEP-disable gadget in order to return control to our code) on the stack and execute the IRET instruction.

PATCHGUARD AND CR4

Since we modify CR4, PatchGuard will eventually notice this and it will generate a BSOD. This is trivial to avoid by

restoring the original CR4 from a small code chunk injected inside the kernel (since we restore the original CR4,

SMEP will become active again and we need to make sure that our code now lays inside a ring0 page – but this is

trivial to do when you have ring0 privilege). The original CR4 can be discovered using the KSPECIAL_REGISTERS

structure inside the current processor control block. As these are undocumented structures, we can leverage the

location of the CR4 field inside the KSPECIAL_REGISTERS structure, as illustrated in Figure 13: A part of the

KSPECIAL_REGISTERS structure, and use the value of CR0 as a search tag. We will start searching from the

beginning of the kernel processor control region, which is pointed by the IA32_GS_BASE MSR on x64 and

IA32_FS_BASE MSR on x86. However, this method is not very reliable, as sometimes, a CR4 value that seems

outdated (with several features, including SMEP, disabled) is located inside this structure. Another way to obtain

the original CR4 value is by sending an IPI to another VCPU and obtain it from there (assuming the system will have

the same CR4 on all CPUs, which should be the case). Also, the entire payload could be injected inside a kernel

page in order to further reduce the window when PatchGuard could catch us with a modified CR4. An example of

areas where the small stub that restores CR4 could be injected is the unused space at the end of the PE sections.

We can easily find available space by parsing the module’s PE headers. This space must be inside an executable

section, but it’s not necessary to be writable – we can simply clear the WP (Write Protect) bit inside CR0, which will

allow us to write non-writable pages while in ring0. The injected code chunk must contain only a few instructions,

12

the most relevant being the restoring of CR4 and the other being the IRET, which will return to ring3 code once our

payload is done executing, as described in the previous section.

Figure 13: A part of the KSPECIAL_REGISTERS structure

PREVENTION

Aside from the obvious solution of applying the latest patches from Xen (which fix these vulnerabilities –Xen

Security Advisories XSA-105 and XSA-106), this kind of exploitation should be easily blocked via the newly

introduced SMAP technology (in Intel Broadwell CPUs) – Supervisory Mode Access Prevention. This technology

forbids supervisory accesses inside user pages. Implicit accesses made to the IDT or GDT are always considered

supervisory accesses. Thus, if we store the IDT inside a user page, we will cause SMAP to generate a Page-Fault

when an interrupt occurs. However, the Page-Fault handler can’t be invoked, as SMAP will generate another Page-

Fault, which will lead to a Double-Fault. Invoking the double-Fault handler is not possible and eventually a Triple-

Fault will be generated. Therefore, the attack will be limited to plain denial of service instead of code execution in

ring0. However, CPUs with SMAP support will probably be released in Q4 2014 and hardware support is not

enough – the Operating System has to actually enable this feature in order to make use of it (most likely Windows

10 will). This means that the attack can still succeed on most of the systems running unpatched versions of Xen.

CONCLUSIONS

Although hypervisors provide a certain level of security by isolation, sometimes they facilitate certain types of

attacks. In this whitepaper we’ve presented a practical attack against the Xen x86 emulator, which can lead to

arbitrary code execution in ring0 or denial of service by crashing the guest. In addition, in the context of the

presented attack, Supervisory Mode Execution Prevention has been circumvented, making the attack functional

and reliable on most of the Intel CPUs and Microsoft Windows operating systems. The proof of concept has been

successfully tested on: Microsoft Windows 7 x86 (without SMEP bypass) and Microsoft Windows 8 x64, Microsoft

Windows 8.1 Update 1 x64, Microsoft Windows Server 2012 x64, Microsoft Windows 10 Technical Preview build

9841 x64 (with SMEP bypass), all running on top of Citrix XenServer 6.2, with Intel® Core™ i7-4770, and on

Microsoft Windows 8.1 Update 1 x64 (with SMEP bypass) running on top of Citrix XenClient 5.1.3 and Citrix

XenClient XT 3.2.2 Trial, build 132629, both with Intel® Core™ i7-3770. Although the proof of concept did not work

properly inside an Amazon VM running Microsoft Windows Server 2012 x64, it did crash the guest, indicating that

the vulnerability is present.

BIBLIOGRAPHY

Intel Corporation. (2014, September 23). Intel Architectures Software Development Manual. Retrieved September

23, 2014, from www.intel.com: http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html

Luft, M. (n.d.). Exploiting Hyper-V: How We Discovered MS13-092. Retrieved from Insinuator:

http://www.insinuator.net/2014/01/exploiting-hyper-v-how-we-discovered-ms13-092/

13

VMware. (n.d.). VMware Security Advisories. Retrieved from VMware Security Advisories:

http://www.vmware.com/security/advisories

Xen Security Advisory. (n.d.). Xen Security Advisory. Retrieved from Xen Security Advisory:

http://xenbits.xen.org/xsa/

	Introduction
	Xen x86 instruction emulator vulnerabilities
	Logic errors in software interrupt handling
	Details of the vulnerability
	Event injection on Intel VT-x

	Inssuficient privilege validations

	Forcing the emulation of arbitrary instructions
	Exploiting the vulnerabilities
	INT (Software Interrupt)
	LMSW (Load Machine Status Word)
	HLT (Halt)
	LGDT (Load Global Descriptor Table)
	LIDT (Load Interrupt Descriptor Table)
	Bypassing SMEP
	About SMEP
	Circumventing SMEP
	Handling missed interrupts
	Returning to ring3
	PatchGuard and CR4

	Prevention
	Conclusions
	Bibliography

