
Breaking the links: Exploiting the linker

Tim Brown

December 13, 2010

<mailto:timb@nth-dimension.org.uk>
<http://www.nth-dimension.org.uk> / <http://www.machine.org.uk>

Abstract

The recent discussion relating to insecure library loading on the Microsoft Windows platform
provoked a significant amount of debate as to whether GNU/Linux and UNIX variants could
be vulnerable to similar attacks. Whilst the general consensus of the Slashdot herd appeared
to be that this was just another example of Microsoft doing things wrong, I felt this was unfair
and responded with a blog post[1] that sought to highlight an example of where POSIX style
linkers get things wrong. Based on the feedback I received to that post, I decided to investigate
the issue a little further. This paper is an amalgamation of what I learnt. As such it contains
my own research, the discoveries of others and POSIX lore.

Contents

1 Technical Details 2
1.1 What is the linker? . 2

1.1.1 The link editor . 2
1.1.2 The runtime linker . 2

1.2 The linker attack surface . 2
1.2.1 The process of linking and executing . 2
1.2.2 Environment . 4
1.2.3 Files . 5
1.2.4 issetugid() and friends . 6

1.3 Real world exploitation . 6
1.3.1 The runtime linker as an interpreter . 6
1.3.2 The empty library . 7
1.3.3 SIGSEGV’ing for 12 years . 8
1.3.4 What’s in your RPATH? . 8
1.3.5 Debian makes me sad :(. 9
1.3.6 If an environment variables is set but you don’t trust it, is it still there? . . . 10
1.3.7 Mapping NULL . 10

1.4 Auditing scripts, binaries and source . 10
1.4.1 Scripts . 10
1.4.2 Binaries . 11
1.4.3 Source . 11

2 Changes 11

List of Tables

1 Environmental attack surface for Solaris, Debian GNU/Linux and FreeBSD runtime
linker . 4

1

List of Figures

1 Process flow for runtime linker . 3

1 Technical Details

1.1 What is the linker?

The linker is a program that takes one or more objects generated by a compiler and combines them
into a single executable program. On GNU/Linux and UNIX variants, linking generally consists of
two stages, one during compilation and one at runtime.

1.1.1 The link editor

When a program comprises multiple object files, the link editor (often referred to as ld) combines
these files into an executable program, resolving the dependencies as it goes along. Link editors can
take objects from a collection called a library. Unless a static binary has been requested, link editors
do not include the whole library in the output. Rather, they include its symbols (references from
the other object files or libraries), as a guide to the runtime linker which will need to be resolved
when the binary is executed.

1.1.2 The runtime linker

The runtime linker (generally known as ld.so) is in actuality a special loader that resolves the
external dependencies (in the form of symbols) for a given executable prior to execution. It then
maps access to the libraries that implement these functions in order to allow successful execution.
As we will see below the way the runtime linker functions can vary significantly significantly even
between ostensibly similar platforms.

1.2 The linker attack surface

1.2.1 The process of linking and executing

In order to execute a binary, the runtime linker must resolve any dependencies to ensure that
externally referenced functions are available within the excecuted binaries process space.
Firstly they look at the hints built into the binary being called. These hints take the form of the
DT_RPATH and DT_RUNPATH ELF headers which consist of colon separated lists of directories that
the linker should examine when looking for libraries. The linker will typically check whether the
process is SetUID or not in order to determine whether macros such as $ORIGIN (which points at
the binaries own path) should be expanded or not.
In the event that a binary does not have these ELF headers or the linker is unable to resolve
all dependencies using the hinted directories, it will then examine environment variables such as
LD_LIBRARY_PATH. As with the expansion of $ORIGIN care should be taken when the process is
SetUID as if the linker were to trust LD_LIBRARY_PATH in such a case then it could be manipulated
into loading malicious libraries at the behest of the calling user.
If the linker is still unable to find a dependancy, then the system’s default configuration (in the form
of the library cache (ld.so.cache on Debian GNU/Linux)) is consulted before the linker finally
tries the hardcoded directories /lib and /usr/lib.
You’ll notice in 1 that certain nodes have been coloured green and red. Whilst I’ll explain the
reasons for this in more detail later in the paper, nodes that are red contain potential weaknesses
that may be exploited by manipulating various facets of the linker attack surface.

2

In general terms, runtime linkers implement the following flow in resolving dependencies.

Figure 1: Process flow for runtime linker

Environment

/lib:/usr/lib

Files

DT_RPATH

issetuid()

issetuid()

/lib:/usr/lib

Environment

Files

DT_RPATH

issetuid()

issetuid()

Solaris 10

Debian GNU/Linux (eglibc)

/lib:/usr/lib

Files

Environment

issetuid()

DT_RPATH issetuid()

FreeBSD 8.1

3

1.2.2 Environment

Linkers have a long history of being attacked via environment variables. As you can see below they
vary significantly in terms of which environment variables each supports and only a small core of
them are present in two or more linkers:

Table 1: Environmental attack surface for Solaris, Debian
GNU/Linux and FreeBSD runtime linker

Linker Stage Solaris 10 Debian GNU/Linux 6.0 (eglibc) FreeBSD 8.1
ld LD RUN PATH
ld. so LD LIBRARY PATH1 LD LIBRARY PATH1 LD LIBRARY PATH

LD PRELOAD17 LD PRELOAD1 LD PRELOAD
LD TRACE LOADED
OBJECTS

LD TRACE LOADED
OBJECTS

LD BIND NOW7 LD BIND NOW LD BIND NOW
LD BIND NOT
LD AOUT LIBRARY
PATH1

LD AOUT
PRELOAD1

LD NOWARN
LD WARN
LD KEEPDIR

LD DEBUG127 LD DEBUG12

LD DEBUG OUT-
PUT27

LD DEBUG OUT-
PUT12

LD VERBOSE
LD PROFILE37 LD PROFILE13

LD PROFILE OUT-
PUT37

LD PROFILE OUT-
PUT13

LD ASSUME KER-
NEL

LD AUDIT7 LD AUDIT4

LD CONFIG7

LD DEMANGLE7

LD FLAGS7

LD LOADFLTR7

LD NOAUDIT7

LD NOAUXFLTR7

LD NOCONFIG7

LD NODIRCONFIG7

LD NODIRECT7

LD NOENVCONFIG7

LD NOLAZYLOAD7

LD NOOBJALTER7

LD NOVERSION7

LD ORIGIN7

LD SIGNAL7

LD DUMP REL
POST
LD DUMP REL PRE
LD LIBMAP

Continued on next page. . .

4

Linker Stage Solaris 10 Debian GNU/Linux 6.0 (eglibc) FreeBSD 8.1
LD LIBMAP DIS-
ABLE
LD ELF HINTS
PATH
LD TRACE LOADED
OBJECTS ALL
LD TRACE LOADED
OBJECTS FMT1
LD TRACE LOADED
OBJECTS FMT2
LD TRACE LOADED
OBJECTS PROG-
NAME
LD UTRACE

Of course there are a whole raft of other variables[2] that can affect the linker but these are the ones
supported by ld and ld.so directly.

1.2.3 Files

In edition to the environment variables listed above, runtime linkers normally have default config-
urations which they will fall back on when the variables aren’t set. The pertinant files are listed
below with notes where necessary:

Solaris 10:

• /var/ld/ld.config

• /var/ld/64/ld.config

These are typically generated using crle.

Debian GNU/Linux 6.0 (eglibc):

• /etc/ld.so.cache

This is typically generated from /etc/ld.so.conf and updated when ldconfig is executed, for
example as part of the installation of packages.

• /etc/ld.so.preload

• /etc/ld.so.nohwcap

• /etc/suid-debug

Whilst this isn’t documented in the man page for ld.so when present it changes how binaries
with the SetUID bit set are executed.

1Cleared on SetUID/SetGID execution
2Writes to $0.$$
3Writes to /var/tmp/¡libraryname¿ or $LD PROFILE OUTPUT/¡libraryname¿ (Solaris) or

$LD PROFILE OUTPUT (Debian GNU/Linux (eglibc))
4Exploited on glibc by Tavis Ormandy: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-CVE-2010-3847

and http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3856
532-bit versions take the form LD 32 . . .
6Exploited by Nikolaos Rangos (Kingcope): http://lists.freebsd.org/pipermail/freebsd-announce/2009-

December/001289.html
732-bit versions take the form . . . 32 and 64-bit versions take the form . . . 64

5

FreeBSD 8.1:

• /var/run/ld-elf.so.hints

• /var/run/ld-elf32.so.hints

• /etc/libmap.conf

• /etc/libmap32.conf

1.2.4 issetugid() and friends

So how does the runtime linker determine whether it should trust user supplied input such the various
LD_... environment variables. Well it depends, for the most part all runtime linkers examine the
real and effective UID of the process, if these are different then the process is considered tainted
and user supplied input will be ignored. That’s the theory, but in practice it isn’t quite that clear
cut. Whilst all the linkers I’ve looked at make this check, it does need to be applied every time the
runtime linker considers an environment variable and as Tavis pointed out, it only takes one case
where the check is missed before you’re in a whole world of pain. Although eglibc does tear down
the LD_... environment variables, it only does this after it has processed them, so if there’s a bug
in the ld.so this may still be exploitable.
Another factor worth considering is the fact that the GNU/Linux world is moving away from the
use of a simple SetUID bit on executable to request a change of privileges. In the last month or so,
I’ve started to see discussions on oss-security regarding replacing the SetUID bit with file system
capabilities[3]. Whilst allowing privilege changes using this mechanism should allow the privileges
to be set in a far more granular manner, it will require significant changes to how processes gain
and drop privileges, something we’re likely to see exploited in due course.

1.3 Real world exploitation

1.3.1 The runtime linker as an interpreter

Imagine a situation in which you’ve by one means or another managed to get command execution
as a non-privileged user and you’re looking for a way to elevate your privileges to the root user. You
notice that the kernel is unpatched against a known vulnerability but you can’t create executable
files (for example that pre-compiled version of the exploit you were playing with in your lab last
week). This is a real world problem, and one that the runtime linker can help you with. You see,
the runtime linker is actually an interpreter, albeit one geared for binaries:

user@host:~$ cp /usr/bin/id .

user@host:~$ chmod a-x id

user@host:~$ ls -la id

-rw-r--r-- 1 user user 32176 Oct 30 13:55 id

user@host:~$./id

bash: ./id: Permission denied

user@host:~$ /lib/ld-linux-x86-64.so.2 ./id

uid=1000(user) gid=1000(user) groups=1000(user),20(dialout),24(cdrom),25(floppy),29(audio),

44(video),46(plugdev),50(staff),116(lpadmin)

As you can see here, I’ve taken the id binary and removed its execute bits to simulate the case where
you have write access to a file system mounted with noexec. Whilst it can’t be run directly, the
runtime linker (in this case the 64-bit version of eglibc’s runtime linker) can still execute it without
a problem.
So why does this work? Well, taking a look at the permissions on the runtime linker we’ll start to
see why:

6

lrwxrwxrwx 1 root root 12 Sep 16 12:03 /lib/ld-linux-x86-64.so.2 -> ld-2.11.2.so

-rwxr-xr-x 1 root root 128744 Sep 15 02:31 /lib/ld-2.11.2.so

You can see that ld-2.11.2.so has execute bits set. The fact is that the runtime linker is just
another executable file, albeit one we rarely call directly. Indeed, on most GNU/Linux variants, the
ldd binary is normally implemented as a shell script wrapper around it:

This is the ‘ldd’ command, which lists what shared libraries are

used by given dynamically-linked executables. It works by invoking the

run-time dynamic linker as a command and setting the environment

variable LD_TRACE_LOADED_OBJECTS to a non-empty value.

From a hardening perspective, if you’re mounting devices with noexec then you should probably
ensure that they the runtime linker can’t be executed either.

1.3.2 The empty library

So there’s been a lot of fuss over the last couple of months about the Microsoft Insecure Library
Loading Could Allow Remote Code Execution[4] vulnerability. Whilst it’s fair to say that the
GNU/Linux dynamic linker doesn’t by default include . in its path and you’ll very rarely see it
listed in ld.so.conf and friends, there are some corner cases.
GNU/Linux and POSIX style linkers makes use of a variable called LD_LIBRARY_PATH which is
consulted when a binary is executed and which takes precedence over the OS default as set in
ld.so.conf. Consider the following script:

#!/bin/sh

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/app/lib

app start

What happens if LD_LIBRARY_PATH isn’t set prior to the script being executed? Well, in that case,
the app binary is executed with a library path of :/path/to/app/lib. This may seem perfectly
satisfactory, but here’s the rub. When the GNU/Linux dynamic linker sees a path with an empty
directory specification such as :/valid/path, /valid/path: or /valid::/path, it treats the empty
element as $PWD. This could lead to a library being loaded from the users current working directory
which might it be exploitable. Go back to the shell script snippet above and consider what would
happen if that was the init script for a privileged process. An administrator needs to stop and start
it but he works in a security aware environment and only has access to the init script via the sudo
command. So off he goes:

user@host:~$ sudo /etc/init.d/app

Sudo by default won’t change your working directory when it executes a command as another user
which means that LD_LIBRARY_PATH will end up pointing at the unprivileged user’s own directory.
What that means is that the GNU/Linux dynamic linker will attempt to load any library depen-
dencies firstly from there.
Since I wrote my blog post highlighting this corner case, a number of real world examples have come
to light:

7

• http://osvdb.org/show/osvdb/67976 - CouchDB

• http://osvdb.org/show/osvdb/68259 - SLURM

• http://osvdb.org/show/osvdb/68258 - SLURM

• http://osvdb.org/show/osvdb/68366 - Qt Creator

• http://osvdb.org/show/osvdb/68802 - TeamSpeak

So how can you set LD_LIBRARY_PATH safely? Well obviously you can check whether it is set before
you append to it, but the following also seems to work quite nicely:

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH:-/path/to/app/lib}"

It’s worth noting too that Debian (at least) are looking to fix[5] the underlying cause.

1.3.3 SIGSEGV’ing for 12 years

Whilst I was fuzzing the various runtime linkers, I came across a number of cases where I could
cause my test binary to crash by manipulating the various LD_... environment variables. One such
case was on Solaris 10 where setting LD_PRELOAD as follows:

user@host:~$ LD_PRELOAD=: su -

leads to a segmentation fault.
The same bug appeared to affect both SetUID and normal binaries and yields the following when
when the core dump is examined with gdb:

Core was generated by ‘./test’.

Program terminated with signal 11, Segmentation fault.

#0 0xfefcfc71 in ?? ()

(gdb) x/1i $eip

0xfefcfc71: movsbl (%esi),%ecx

(gdb) info reg esi ecx

esi 0x0 0

ecx 0x0 0

which is sadly is a NULL pointer dereference inside ld.so.1.
Further analysis showed that a similar bug was reported publicly[6] in 2005, but according to Sun
this one is different. For what it’s worth, it’s been present since Solaris 8 and affects up to and
including the last public release of OpenSolaris.
Sun have assigned issue number 7001523 to this issue.

1.3.4 What’s in your RPATH?

I’ve already spoke in this paper on one such case where the runtime linker can be tricked into using
malicious libraries using the LD_LIBRARY_PATH environment variable but there’s actually another
more interesting case which I’d like to discuss.
If you examine the linker attack surface table above you’ll notice that I mention an environment
variable LD_RUN_PATH which affects the link editor. By setting this (or indeed the -rpath flag) it is
possible to hardset additonal locations where the runtime linker should look when resolving external

8

dependencies. On GNU/Linux at least, when the DT_RPATH or DT_RUNPATH exists within the ELF
headers of a binary then these will be honoured first when looking for shared libraries. Additionally,
the keyword $ORIGIN within this header is expanded to be the path of the directory where the object
is found, while both . and the empty directory specification are honoured, even for binaries with
the SetUID bit set. From an attackers pespective, SetUID binaries with DT_RPATH are particularly
nice, since we can make use of hard links to manipulate the runtime linker into using an $ORIGIN

which we can control.
By way of a comparison, Solaris and FreeBSD appears to ignore $ORIGIN for SetUID binaries and
Debian patched the $ORIGIN issues with libc6 2.11.2-7.
Note that Solaris has another problem relating to DT_RPATH which I’ll discuss later.

1.3.5 Debian makes me sad :(

On Debian GNU/Linux hosts, the runtime linker cache (ld.so.cache) is generated from the contents
of /etc/ld.so.conf.d/* (/etc/ld.so.conf just includes the contents of this directory). One of the
files included is /usr/local/lib which is writable by the staff group. This sounds useful but there
is a problem. The library search path order generated in the cache is such that dependencies are likely
to be resolved before the runtime linker gets as far as looking at libraries under /usr/local/lib.
Because of this I began looking for ways to control the order in which the standard libraries are
searched and in doing so I stumbled across the LD_ASSUME_KERNEL variable which can be set for
the excution of any binary including those that have the SetUID bit set. The eglibc man page for
ld.so[7] states that:

Every DSO (Dynamic Shared Object, aka shared library) can tell the dynamic linker in
glibc which minimum OS ABI version is needed. The information about the minimum
OS ABI version is encoded in a ELF note section usually named .note.ABI-tag. This
is used to determine which library to load when multiple version of the same library
is installed on the system. The LD_ASSUME_KERNEL environment variable overrides the
kernel version used by the dynamic linker to determine which library to load.

By creating a copy of libc.so.6 under /usr/local/lib with an earlier ABI version and setting
the LD_ASSUME_KERNEL environment variable to the same version, any user in the staff group can
cause binaries with the SetUID bit set to use our copy like so:

user@host:~$./test

uid=1000,euid=0,gid=1000,egid=0

user@host:~$ LD_ASSUME_KERNEL=1.1.1 ./test

./test: error while loading shared libraries: libc.so.6: cannot open shared object file:

No such file or directory

user@host:~$ cp libc.so.6 /usr/local/lib/

user@host:~$ LD_ASSUME_KERNEL=1.1.1 ./test

uid=1000,euid=0,gid=1000,egid=0

It’s worth noting a couple of things about the above attack. Firstly, I had to hexedit the library after
compilation to change the change the value of its .note.ABI-tag and secondly that after copying
libc.so.6 into /usr/local/lib, I had to force ldconfig to be executed to update the runtime
linker cache. In the real world you’d need to wait for an updated package to call it on your behalf
during installation.
Since I orginally wrote this section of the paper, I’ve been doing some further research and it appears
that I actually got this wrong[8], it is not required to set LD_ASSUME_KERNEL in order for this to
be exploited as the cache generated by ldconfig appears to be constructed in reverse alphabetical
order and therefore /usr/local/lib is checked before /usr/lib.

9

1.3.6 If an environment variables is set but you don’t trust it, is it still there?

Having seen how eglibc’s runtime linker can be manipulated, there will no doubt be a number of
people cracking jokes about long haired hippies so I figured I’d take a look how FreeBSD’s runtime
linker compares. The FreeBSD man page for ld.so[9] seems to indicate that it clears the vast
majority of linker related environment variables when it is used to execute but I decided to hook up
my fuzzer to make sure it didn’t do anything daft.
It seems that whilst it ignores the vast majority of them when resolving runtime dependencies,
unlike eglibc used by Debian GNU/Linux, it doesn’t actually unset[10] them in unsetenv which
means they’re inheritable by all processes spawned by the SetUID binaries. Having a look at the
code responsible, it seems to use issetugid()[11] to determine whether to trust the environment
variables. So far so good right? Well, not exactly, if the SetUID binary sets the processes real user
ID based on the effective ID. This appears to untaint the running SetUID process to a degree where
the runtime linker will trust the inherited linker specific environment variables including those such
as LD_PRELOAD which can be used to modify the execution flow. Further testing appeared to show
that the Solaris linker was subject to the same attack.
Whilst I haven’t found any cases of SetUID binaries that are exploitable in this manner, it does
show the difference that subtleties in a linker implementation can make.

1.3.7 Mapping NULL

Strange as it may seem, whilst the GNU/Linux world has finally moved to prevent userland processed
from mmap()’ing NULL, this is not the case on Solaris where it can still be mapped. More strangely
still, Sun actually provide a library which maps 0, with the following rationale (taken from the man
page for ld.so.1[14]:

The user compatibility library /usr/lib/0@0.so.1 provides a mechanism that establishes a
value of 0 at location 0. Some applications exist that erroneously assume a null character
pointer should be treated the same as a pointer to a null string. A segmentation violation
occurs in these applications when a null character pointer is accessed. If this library is
added to such an application at runtime using LD PRELOAD, the library provides an
environment that is sympathetic to this errant behavior. However, the user compatibility
library is intended neither to enable the generation of such applications, nor to endorse
this particular programming practice.
In many cases, the presence of /usr/lib/0@0.so.1 is benign, and it can be pre-loaded
into programs that do not require it. However, there are exceptions. Some applications,
such as the JVM (Java Virtual Machine), require that a segmentation violation be gen-
erated from a null pointer access. Applications such as the JVM should not preload
/usr/lib/0@0.so.

1.4 Auditing scripts, binaries and source

1.4.1 Scripts

To check for unsafe concatenation in shell scripts that could lead to empty directory specifications,
you can create your own libc.so in your home directory and then wait for scripts to fail like so:

touch ./libc.so.6 && sudo ...

Whilst I’d being playing with privately, it’s also fair to mention that @kees cook also mentioned this
approach on Twitter.
Additionally as described in 1.3.2, you can look for constructs such as:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/app/lib

10

1.4.2 Binaries

With binaries you should firstly check the values of any DT_RPATH and DT_RUNPATH ELF headers
within the binaries using one of the following commands:

objdump -x ...

readelf -a ...

scanelf (from PaX)

elfdump (from Sun)

Secondly, as was seen in 1.3.6, you should be wary of any SetUID binaries that depend on setuid()

and which execute further processes without unsetting any inherited environment variables.

1.4.3 Source

Finally, if you’re lucky enough to have the source, keep any eye out for the following patterns which
will lead to will lead to the unsafe ELF headers previously described.
You should look to identify any build scripts, Makefiles or similar which honour the LD_RUN_PATH

environment variable.
As well as watching out for badly written build scripts you should also look at how gcc and the link
editor themselves are called. The following command patters can be problematic.

gcc -Wl,-R,...

ld [-rpath|-rpath-link]=...

ld -R ...

As I’ve already shown with scripts, the presence of . or the empty directory specification of the
DT_RPATH or DT_RUNPATH ELF headers, or in flags being used by gcc during the build process could
allow libraries to be loaded from the current working directory however you should also be mindful
of $ORIGIN macros or hard coded directory specications.

2 Changes

9th December 2010 Redacted specific vulnerabilities until vendor patches have been released,
also added details of linking process

12th November 2010Added Sun/Oracle references, Reflections on Trusting Trust revisited,
Mapping NULL and other misc bug fixes

12th November 2010Incorporated feedback including details on issetugid(), /etc/suid-debug,
file system capabilities, noexec, references and other misc bug
fixes. Also added details of LD PRELOAD=: bug

8th November 2010 Initial external peer review, thanks @stealth and @taviso

References

[1] http://www.nth-dimension.org.uk/blog.php?id=87

[2] http://www.scratchbox.org/documentation/general/tutorials/glibcenv.html

[3] http://www.openwall.com/lists/oss-security/2010/11/08/3

[4] http://www.microsoft.com/technet/security/advisory/2269637.mspx

11

[5] http://www.openwall.com/lists/oss-security/2010/09/29/1

[6] http://www.securityfocus.com/archive/1/403575/30/0/threaded

[7] http://manpages.ubuntu.com/manpages/lucid/man8/ldo.so.8.html

[8] http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=504516

[9] http://www.freebsd.org/cgi/man.cgi?query=ld.so

[10] http://svn.freebsd.org/viewvc/base/head/lib/libc/stdlib/getenv.c

[11] http://svn.freebsd.org/viewvc/base/head/libexec/rtld-elf/rtld.c

[12] http://cm.bell-labs.com/who/ken/trust.html

[13] http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/cmd/sgs/rtld/common/paths.c

[14] http://docs.sun.com/app/docs/doc/819-2239/ld.so.1-1?a=view

12

