
Cryptanalysis of DES Implemented on
Computers with Cache

Yukiyasu Tsunoo1, Teruo Saito2, Tomoyasu Suzaki2, Maki Shigeri2, and
Hiroshi Miyauchi1

1 NEC Corporation, Internet Systems Research Laboratories
4-1-1, Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 216-8555, Japan

{tsunoo@bl, h-miyauchi@bc}.jp.nec.com
2 NEC Software Hokuriku Ltd.

1, Anyoji, Tsurugi, Ishikawa 920-2141, Japan
{t-saito@qh, t-suzaki@pd, m-shigeri@pb}.jp.nec.com

Abstract. This paper presents the results of applying an attack against
the Data Encryption Standard (DES) implemented in some applications,
using side-channel information based on CPU delay as proposed in [11].
This cryptanalysis technique uses side-channel information on encryption
processing to select and collect effective plaintexts for cryptanalysis, and
infers the information on the expanded key from the collected plaintexts.
On applying this attack, we found that the cipher can be broken with
223 known plaintexts and 224 calculations at a success rate > 90%, using
a personal computer with 600-MHz Pentium III.
We discuss the feasibility of cache attack on ciphers that need many
S-box look-ups, through reviewing the results of our experimental
attacks on the block ciphers excluding DES, such as AES.

Keywords: DES, AES, Camellia, cache, side-channel, timing attacks

1 Introduction

Recently, many proposals have been made for cryptanalysis techniques to mea-
sure physical information from a cryptographic device. These techniques are
called “side-channel attacks.” Typical examples are Differential Power Analysis
[5], which measures the variation in power consumption caused by a crypto-
graphic device, and Differential Fault Analysis [1], which causes some sorts of
physically erroneous operation to occur in a cryptographic device and then mea-
sures resulting phenomena. Because techniques of this kind are mainly used for
attacking cryptographic systems implemented on smart cards, anti-tampering
measures e.g. adding noise to consumed power have been considered. “Timing
attacks” [2][6] that measure the encryption time of a cryptographic application
can also be treated as side-channel attacks. A countermeasure to attacks of this
type is to eliminate branch processing in the implementing algorithm so that
encryption times are equivalent.

Previously proposed timing attacks make use of the fact that conditional
branches that occur during encryption processing cause variations in encryption

C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 62–76, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Cryptanalysis of DES Implemented on Computers with Cache 63

time. CPU cache misses, however, can also cause such variations. In this regard,
most of the recent computers employ a “CPU cache”, abbreviated simple to a
“cache” from here on, between the CPU and main memory, since this type of
hierarchical structure can speed program run-time on the average. If, however,
the CPU accesses data that were not stored in the cache, i.e. if a cache miss
occurs, a delay will be generated, as the target data must be loaded from main
memory into the cache. The measurement of this delay may enable attackers to
determine the occurrence and frequency of cache misses.

With the above in mind, we have focused our attention on data-access pro-
cessing, i.e. the operations of the S-box commonly used by encryption algorithms,
and have developed a new attack technique to infer the information on S-box
input from the variations in encryption time for different plaintexts. This is
classified as a side-channel attack on software-implemented ciphers, and it has
already broken MISTY1 [11] successfully. It does not require specialized mea-
suring equipment; the cipher can be broken in a relatively short time using a
personal computer, if the encryption module of the cipher is available. Though
Kelsey et al. described the feasibility of a cache-based attack on ciphers using
a large S-box e.g. Blowfish [4], they did not refer a specific method. The first
application of an attack using a cache is described in [11].

We made experimental attacks on some block ciphers including Data Encryp-
tion Standard (DES). This paper describes the cases we could break the cipher
in spite of frequent S-box look-ups, or the resistance to the attack described in
[11].

This paper is organized as follows. Section 2 describes the basics of the pro-
posed attack. Section 3 then describes the method of applying this attack to
DES and presents the results of our experiment. Section 4 shows the results of
this attack on AES and Camellia. Lastly, section 5 concludes the paper.

2 The Basics of Attack

2.1 Cache Operation

A cache is a form of memory that allows faster reading and writing of data
than those in a main memory. It is located between the CPU and main memory.
When reading data from main memory, the CPU first checks the cache, and if
the target data is present, it reads the data from the cache. Finding data in the
cache in this way is called a “cache hit,” while not finding data in the cache and
reading it from main memory is called a “cache miss.” In the latter case, the data
read from main memory is also written to the cache 1, so that any subsequent
reading of this data might speed up. In short, a delay in processing will occur
even for the same instruction if target data does not exist in the cache, and this
delay will appear as a variation in the program execution time.

1 In reality, values near the referenced one will also be loaded into the cache.

64 Y. Tsunoo et al.

S

K
0

K
1

P
0

P
1

S

Fig. 1. Cipher With Two S-boxes

2.2 The Encryption Time and S-Box Operation

As described in Section 2.1, plaintext with the long encryption time should
correspond to the frequency of cache miss. In the following, we examine the
conditions for the generation of cache misses in the encryption process.

In the encryption processing, data access occurs when the S-box is referenced.
What then are the conditions that would generate more cache misses when
referencing the S-box? Consider that a cache miss occurs when first referencing
the S-box and that the data in question is therefore loaded into the cache as
described earlier. Now, when next referencing the S-box, if the S-box input value
is the same as the already referenced value or its nearby one 2, data referencing
can be done by accessing the cache; a cache miss does not occur. If, however,
a value excluding already referenced ones and their nearby ones is referenced,
the desired data will not be found in the cache and will have to be loaded from
main memory; cache miss occurs. Accordingly, when making multiple S-box
references during the encryption process, the number of cache misses increases
proportionally with the number of different S-box input values.

Based on the above reasoning, the encryption time should be long if there
are many different data referenced by the S-box during encryption. Thus, the
measurement of the encryption time for a plaintext makes it possible to deter-
mine whether that plaintext is of the type that generates many cache misses in
encryption (i.e., plaintext for which there are many different S-box input values).

2.3 Attack Model

The cipher with two S-boxes shown in Fig. 1 is used to explain the basics of the
process of obtaining information on keys, which exploits side-channel informa-
tion. The structure shown in the figure employs independent keys K0 and K1 in
different S-boxes.

Referring to Fig. 1, we assume that the relationship between the input values
of the two S-boxes under comparison is understood. The key differential value

2 Values near the referenced value will be simultaneously loaded due to the character-
istics of CPU.

Cryptanalysis of DES Implemented on Computers with Cache 65

K0 ⊕ K1 (referred to below as “key difference”) can therefore be inferred from
the values of plaintext P0 and P1, using either of the following relations.

P0 ⊕ K0 = P1 ⊕ K1 → P0 ⊕ P1 = K0 ⊕ K1 (1)
P0 ⊕ K0 �= P1 ⊕ K1 → P0 ⊕ P1 �= K0 ⊕ K1 (2)

In other words, if the plaintexts for which S-box input values are frequently
the same or frequently different are collected by measuring the encryption time,
the information on the key differences can be obtained from those plaintexts.
The attack comprised of 2 processes, the one for obtaining the key differences
and the one for collecting cache timing data described in Section 3.2 is called a
“cache attack.” Obtaining key differences by a cache attack can reduce the key
search space.

As the structure shown in Fig. 1 can be found in many block ciphers, it is
thought that cache attacks can be widely applicable to ciphers of this type.

2.4 Non-elimination/Elimination Table Method

As described above, a correlation exists between the encryption time and the
relationship between input values of separate S-boxes. We consider the following
two methods of obtaining a key difference, based on such information.

The first method corresponds to the situation in which the input values
of S-boxes under comparison are equivalent. In this case, Eq. (1) holds and
the values for the key differences can be calculated from plaintext information.
Implementing this method requires the collection of plaintexts resulting a short
encryption time under the assumption that a plaintext having a small number of
cache misses equals a plaintext having a short encryption time. It can therefore
be guessed that most of the collected plaintexts result in equivalent input values
between the S-boxes in question. Key differences can therefore be calculated for
the collected plaintexts and the value counted most frequently can be regarded as
the correct key difference. We call this method a “non-elimination table attack.”

The second method corresponds to the situation in which the input values of
S-boxes under comparison are different. In this case, Eq. (2) holds and values of
improbable key differences can be excluded. Implementing this method requires
the collection of plaintexts resulting a long encryption time under the assumption
that a plaintext having a large number of cache misses equals a plaintext having
a long encryption time. Thus, the most of the collected plaintexts are guessed
to result in different input values between the S-boxes. Key differences for the
collected plaintexts can therefore be calculated and the value that appears the
least frequently is taken as the correct key difference. We call this method an
“elimination table attack.”

For DES, the number of S-box operations is 16, a rather small one, consid-
ering that each S-box has 64 entries. Therefore, it is predicted that many input
values will be different between the S-boxes, making it easy to collect plaintexts.
Thus, we applied an elimination table attack on DES.

66 Y. Tsunoo et al.

48bit

Rn (32bit)

E

Kn+1 (48bit)

S1 S2 S3 S4 S5 S6 S7 S8

P (32bit)

Output (32bit)

K1(48bit)

F (R0,K1)

IP

IP-1

Plaintext (64bit)

Ciphertext (64bit)

K16(48bit)

L0 (32bit) R0 (32bit)

R15 (32bit)L15 (32bit)

F (R15,K16)

Round function

Whole structure

Fig. 2. Whole Structure and Round Function

3 Attack on DES

3.1 DES Structure

DES has a 16-round Feistel structure. Each round function features eight S-boxes
each with a 6-bit input and a 4-bit output. An S-box operates 16 times, a small
number compared to its 26 = 64 entries. In the key scheduler, 48-bit of a 64-bit
secret key is selected for each round, and its value is used as a expanded key for
the corresponding round. Refer Fig. 2 and Fig. 3 for details.

As shown in Fig. 3, the total number of left cyclic shifts is set to 28 bits,
which means that (C0, D0) and (C16, D16) have the same value. Thus, (C1, D1)
used in the round 1 and (C16, D16) used in the round 16 are related by a 1-bit
left cyclic shift. This relationship is used for the secret key recovery described in
Section 3.2.

3.2 Attack Technique

This section describes the DES attack technique in detail. The steps making up
this attack are divided into two main stages. Stage 1 is used to collect plaintexts
for encryption, while Stage 2 is used to obtain key differences from the collected
plaintexts. These stages are performed independently of each other.

The experiment described in this paper was done in the machine and compile
environment summarized in Table 1.

Cryptanalysis of DES Implemented on Computers with Cache 67

Secret key

PC2

PC-1

PC2

PC2

LS LS

LS LS

LS LS

K2

K1

K16

C
0

D
028 28

C
1

D
128 28

5648

C
2

D
228 28

5648

C
16

D
1628 28

48 56

Round number Left shift number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

1

2

2

2

2

2

2

1

2

2

2

2

2

2

1

Fig. 3. Key Schedule

Collection of Plaintext. We first describe the method of collecting plaintext;
Stage 1 of the attack. Here, plaintext having a long encryption time is needed
to apply the elimination table attack described in Section 2.4. Our approach
therefore is to encrypt a fixed amount of randomly generated plaintexts and to
examine the resulting distribution of encryption time. The following method is
used to measure the delay caused by cache misses as accurately as possible. The
characteristics of the CPU (Pentium III) used in this experiment are also taken
into account, and the DES source code that we use is the one described in [10].
In this source code, it is declared to assign 4 bytes to each entry of S-box, since
S-box and bit permutation are computed simultaneously, for faster performance.
The encryption time measurement method is as follows.

– Before beginning measurements, S-box data is deleted from the L1 data
cache. In actuality, 16 kilobytes of random data are loaded into the 16-
kilobyte data area of the L1 data cache to fill it.

– The rdtsc instruction, which loads the value of the processor’s time stamp
counter into a register, is used to measure encryption time ; the instruction
is executed directly before and after encryption and the difference between
the obtained values is used to compute the encryption time.

The above method enables to measure the encryption time for any plaintext
and to collect plaintext/ciphertext pairs required for obtaining key differences.

68 Y. Tsunoo et al.

Table 1. Experimental Environment

PC NEC MateNX MA60J
CPU Intel Pentium III(Katmai) 600MHz
L1 data cache 16-KB 4-Way Set Associative Cache 32-byte cache line
L2 cache (size / speed) 512KB / Half (300MHz)
Bus clock 100MHz
OS Microsoft Windows2000 SP3
Compiler Microsoft Visual C++ 6.0 SP5
Compile option Maximize Speed (/O2)

50

51

52

53

54

55

56

57

58

59

60

1400 1450 1500 1550 1600 1650 1700

encryption time

a
v
e
ra
g
e
 n
u
m
b
e
r
o
f
c
a
c
h
e

m
is
s
e
s

Fig. 4. Relationship Between Number of Cache Misses and Encryption Time

Relationship between Encryption Time and Cache Misses. We inves-
tigated whether the collected plaintexts actually operate as expected. Fig. 4
shows number of cache misses versus encryption time for the randomly gener-
ated plaintexts. We used a single arbitrary key for our experiment to measure
the frequency of cache miss. Fig. 4 also shows that the number of cache misses
increases as encryption time becomes long.

Fig. 5 shows the relationship between the number of plaintexts and the num-
ber of cache misses, for randomly generated plaintexts and plaintexts having a
long encryption time. These results confirm that plaintexts having a long en-
cryption time include significantly more plaintexts causing many cache misses
than randomly generated plaintexts.

Making an Elimination Table Attack (Obtaining Key Differences).
This part describes the method of obtaining key differences; Stage 2 of the attack.
It is guessed that input values to the S-boxes of round 1 differ respectively from
those to the corresponding S-boxes of round 16. Thus, Eq.(3) must hold.

K1 ⊕ K16 �= E(R0) ⊕ E(R15) (3)

Cryptanalysis of DES Implemented on Computers with Cache 69

0

5000

10000

15000

20000

25000

30000

45 50 55 60 65

number of cache misses

n
u
m
b
e
r
o
f
p
la
in
te
x
ts randomly generated plaintexts

collected plaintexts

Fig. 5. Relationship Between Number of Plaintexts and Number of Cache Misses

Based on the concept presented in Section 2.4, the value appearing least
frequently among those obtained by E(R0) ⊕ E(R15) is highly likely to be the
correct key difference, when providing enough plaintexts collected in Stage 1.
Thus, it can be determined that the value appearing least frequently as E(R0)⊕
E(R15) is the correct key difference. This computation is performed for each
pair of S-boxes S1 through S8 in rounds 1 and 16 to obtain eight key differences.

However, the 2 bits from the LSB; Least Significant Bit side of each key
difference are indeterminate. This is because a cache miss does not occur if the
input values of the 2 S-boxes under comparison differ to each other by the value
within the range of the cache load size 3. This means that the difference by the
value less than the cache load size is ignored. Thus, the adjacent values of the
value to be counted least frequently as a key difference are not counted, if the
non-elimination table attack is applied. This is true to the adjacent values of
the value to be counted most frequently, when elimination table attack is made.
Thus, a key difference can be obtained, but the bits from the LSB side of it
are still indeterminate; the 3 bits from that are be theoretically indeterminate.
In our experiment, however, the 2 bits from the LSB side were found to be
indeterminate because of absence of S-box addresses on a 32-byte boundary .

Considering above, we guess that the 4 bits from the MSB; Most Significant
Bit side of each obtained key difference are correct, when recovering the secret
key.

Recovering the Secret Key. The secret key is recovered from the 8 key
differences obtained in Stage 2 in the following way.

Step 1. Prepare one plaintext/ciphertext pair by encrypting any plaintext with
the actual secret key.

3 The Pentium III Processor has a 32-byte cache load size i.e. 8 entries will be loaded
simultaneously if it is declared to assign 4 bytes to each entry of S-box.

70 Y. Tsunoo et al.

Table 2. Experimental Results

Number of Number to be Probability of
Plaintext/Ciphertext Pairs used as 2n−m substituted for 2−m Success

2−6 68.7%
216 2−7 74.7%

2−8 85.0%
2−6 90.7%

217 2−7 92.3%
2−8 97.0%

Step 2. Determine 1 bit of the expanded key for round 16 by using the obtained
key difference between round 1 and round 16 and then guessing any 1 bit
of the expanded key for round 1. In this way, make a 32-bit (4 bit × 8
key differences) exhaustive search on the expanded key for round 1 with
respect to the previously obtained key differences; this allows determining
the expanded key for the corresponding round 16. 1 or more bits can be
also determined by guessing 1 bit, based on the relationship between the
two expanded keys for round 1 and round 16, which is described Section
3.1. Consequently, secret key is guessed by 24-bit exhaustive search on the
expanded key for round 1. See the appendix for a detailed description on the
secret-key recovery method.

Step 3. Encrypt the plaintext prepared in Step 1, using the secret key guessed
in Step 2. If the resulting ciphertext agrees with the one obtained in Step 1,
the secret key is correct. If they do not agree, return to Step 2. Note that
if the secret key cannot be recovered by a 24-bit exhaustive search, the key
differences guessed in Section 3.2 are mistaken.

3.3 Results of Experiment

Table 2 lists the results of DES elimination table attack described in Section 3.2.
For the attack, we use 2n−m out of 2n randomly generated plaintexts which are
collected in order of decreasing duration of encrypting. In reality, three numbers
of 2−6, 2−7 and 2−8 were taken as 2−m to compare the probability of success of
the attack, while two numbers of 216 and 217 were used as 2n−m. The experiment
was performed using 300 secret keys for two parameters; the number of plaintexts
and the number to be substituted for 2−m.

The results shown in Table 2 tell us that the secret key is recovered with
a probability > 90%, when collecting 217 plaintext/ciphertext pairs and that
setting a stricter condition for collecting plaintexts enables to collect the plain-
text/ciphertext pairs having more cache misses.

3.4 Discussion

The above sections described a technique for breaking DES and the results of
making attacks. Those results, however, are dependent on the experimental envi-

Cryptanalysis of DES Implemented on Computers with Cache 71

ronment specified in Table 1. Since a cache attack is a type of side-channel attack,
there is a high possibility that the results will vary significantly according to the
environment of computer. It is also thought that the result and its efficiency will
vary according to source code. The following discusses these factors.

A cache attack infers the frequency of cache miss from side-channel informa-
tion and uses it to obtain key differences. As a consequence, S-box size can have
a great effect on the attack. In the DES source code used in our experiment,
it is declared to assign 4 bytes to each entry of an S-box (referred to below as
int type). For the S-box declared as int type, eight entries are loaded into the
cache per 1 cache load. Thus, considering that an S-box of DES has 64 entries
in all, all S-box data will be loaded into the cache if eight cache misses occur. In
contrast, for an S-box, for which it is declared to assign 1 byte per entry (referred
to below as char type), 32 entries are loaded into the cache per 1 cache load;
this means that only two cache misses are needed to occur, to load all S-box
data. It therefore seems impossible that the duration of encryption determines
the frequency of cache miss and that useful plaintexts are selected and collected.
For confirmation, we applied an experimental attack on DES with the source
code described in [10], after changing only the S-box declaration type from int
to char, to find that the attack failed entirely. However, when a 32-bit processor
such as Pentium III is used, the int type data is processed faster than char type
data. Thus, the data which can be declared as char type will often be declared
as int type, when implementing ciphers. The kind of implementation for faster
processing can lead to the vulnerability to cache attacks.

3.5 Attack on Triple-DES

In this section, we consider whether the above cache attack on DES can be made
on Triple-DES. Triple-DES performs a DES process three times in the form of

• Encryption - Decryption - Encryption, or
• Encryption - Encryption - Encryption.

In addition, there are three ways of using keys, as follows.

(a) K1 - K2 - K3
(b) K1 - K2 - K1
(c) K1 - K1 - K1

Repeating DES three times in this manner makes greater resistance to crypt-
analysis techniques like differential and linear cryptanalysis that employ the cor-
relation of round functions. At the same time, secret key variations (a) and (b)
feature a longer key length than DES, making it all the more difficult to perform
an exhaustive key search.

In any of the above Triple-DES variations, an S-box operates 48 times; three
times as many as DES. Still, if operation delay due to cache misses can be
measured, it should be possible to make a cache attack against Triple-DES in
the same way as DES.

72 Y. Tsunoo et al.

Table 3. The type of S-box of cipher and the technique of applying the cache attack.
Ssize represents the number of S-box entries while Snum stands for the number of
the times that S-box look-up is performed. Smiss represents the maximum possible
number of the times that cache miss is caused by S-box look-up. Technique shows the
combination of the type of the plaintexts used for cryptanalysis and the type of the
technique of applying attack

Ssize Snum Smiss Technique

DES 64 16 8 plaintexts with long encryption time
MISTY1(S9) 512 48 64 and elimination table attack
Camellia 256 36 32
AES 256 160 8 plaintexts with long encryption time

and non-elimination table attack

It is guessed that, similarly to DES, the key difference between round 1 and
48 can be determined. For cryptanalysis on an actual computer, we can expect
2 bits from LSB side of the key difference to be indeterminate and that the
actually computed key difference consists of 4-bits×8 = 32 bits. Thus, for secret
key variation (a) having a key length of 168 bits, the 32 bits of K3 can first
be determined by guessing the 32 bits of K1. Then, if an exhaustive key search
is performed on the remaining 104 bits(= 168 − 64), it should be possible to
break the cipher in 2136 calculations. This concept also holds for the other key
variations, that is, it should be possible to break Triple-DES in a more efficient
way than applying an exhaustive key search.

4 Other Ciphers

We made experimental cache attacks on AES and Camellia. Based on the results
of the attacks, this section discusses the relationship between the number of the
times that S-box look-up is performed and the cache attack.

4.1 Results of the Experiment

Table 3 shows the type of S-box and the technique of applying the cache attack
for each cipher. Information on DES and MISTY1 is also given in the table for
comparison. The following outlines the technique of applying cache attack on
Camellia and AES.

Camellia. The source code is first modified by techniques for speeding-up the
cipher which are recommended by the designer and described in the specification
[3]. For each of the four S-boxes declared by the speeding-up techniques, the
frequency of occurrence of cache miss is directly proportional to the encryption
time, as is observed for DES. The usage of this property and 218 plaintexts with
long encryption time provides obtaining 168-bit key differences concerning with

Cryptanalysis of DES Implemented on Computers with Cache 73

0

10000

20000

30000

28265 28275 28285

encryption time

n
u
m
b
e
r
o
f
te
x
ts

6

7

8

9

10

a
v
e
ra
g
e
 n
u
m
b
e
r
o
f

c
a
c
h
e
 m
is
s
e
s

Texts All Rounds Round1

Fig. 6. Correlation Between the Encryption Time and the Average Number of Cache
Misses (on AES). This graph also represents the encryption time distribution of plain-
texts

a 256-bit equivalent key composed by the subkeys on round 1 through round 4,
and the subkeys that are activated by the initial processing. Using the obtained
key differences, approximately 224 computations provides the recovery of the
secret key.

AES. We employed the available source code in [7]. No correlation is found
between the frequency of occurrence of cache miss and the encryption time. (See
the plot labelled “All rounds” in Fig.6) However, studies on the 16 S-boxes used
at the beginning of the algortithm have shown the correlation that lower fre-
quency of cache misses implies longer encryption time. (See the plot labelled
“Round 1” in Fig.6) This property provides 96-bit key differences through col-
lecting 218 plaintexts with long encryption time and regarding the value counted
most often as a correct key difference. A 32-bit brute-force search using these
key differences allows recovering the secret key.

4.2 Discussion

According to the paper [8] written by Ohkuma et al., the cache attack is theoret-
ically feasible even if the number of the times that S-box look-up is performed is
fairly large. The following equation represents the probability that the value of
the frequency of cache miss is n, where N and M stand for the number of S-box
input and the number of the times that S-box look-up is performed, respectively.

N−M

(
N
n

) n∑
j=1

(
n
j

)
(−1)n−jjM

This equation also indicates that it is theoretically feasible to break a cipher,
if the cipher has the possibility that the value of the frequency of cache miss
varies, depending on the collected plaintexts.

74 Y. Tsunoo et al.

The accurate difference between the values of the frequency of cache miss is
hard to obtain, when the attack is applied using a practical computer. When
the cipher (e.g. AES) does not cause significant difference between the values of
the frequency of cache miss, regardless of the plaintexts used for the attack, it is
hard to perform the cryptanalysis using the values of the frequency of cache miss
and the encryption time. However, we broke such kind of cipher, by utilizing the
correlation between the encryption time and the probability that the values for
some of S-box inputs are identical. When the ciphers cause fewer S-box look-
ups and significant variations in the frequency of cache miss, like DES , we can
expect that the frequency of cache miss and the encryption time correlate to each
other. The correlation between the encryption time and the probability that the
values for some of S-box inputs are identical, which is used for the cryptanalysis
of AES, however, varies significantly, depending on the type of CPU and the
method of implementing source code. For example, the durations of encrypting
two sets of plaintexts with the same values of total frequency of cache miss
on Intel Pentium III processor are sometimes different, depending on whether
or not the cache misses occur continuously at the beginning of the encryption.
In addition, which core is used for Intel Pentium III processor, Coppermine or
Katmai decides which S-box to use for cryptanalysis and which attack to apply,
non-elimination table attack or elimination table attack. In this case, the cipher
can be broken, if we take possession of the source cord of the target cipher in
advance and find the values of S-box inputs whose probability of being identical
correlates to the encryption time.

5 Conclusion

We have shown that the Data Encryption Standard (DES) can be broken with
223 known plaintexts and 224 calculations at a success rate > 90%, using a
personal computer with 600-MHz Pentium III. We have also shown that a cache
attack can be made against a cipher using S-boxes of different input/output
widths or S-boxes of several types. Furthermore, in applying this cache attack
to Triple-DES, it was found that there is a high possibility of it being broken
more efficiently than an exhaustive key search.

This paper reports applying cache attack using a personal computer. In 2002,
cache based cryptanalysis [9] was proposed where cache hits and/or cache misses
are observed by the use of electric power or magnetic force. Since the next
generation of 32-bit smartcards will use cache memories, the combination of the
cache attack we proposed and Power Analysis attacks could probably be a more
effective cryptanalysis technique.

We also consider countermeasures against cache attacks; a cache attack infers
the number of times of occurred cache misses by observing the encryption time.
Thus, if a total-data load is executed before processing, differences between the
frequencies of cache misses will not be observed, making it impossible to deter-
mine the relationships between sets of S-boxes. If it is possible to clear a cache

Cryptanalysis of DES Implemented on Computers with Cache 75

during the encryption, generating noise that has no relation with encryption at
random time intervals is an effective countermeasure against cache attacks.

The cache attacks are newer technique in comparison with the timing at-
tacks on RSA. The encryption efficiencies can be enhanced by the studies to be
conducted in future.

Acknowledgement. The authors would like to thank Hiroyasu Kubo, Takeshi
Kawabata, Etsuko Tsujihara and Yuya Yoshioka for their useful comments and
suggestions. We are also grateful to the anonymous reviewers of CHES 2003 for
their helpful comments.

References

1. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
CRYPTO’97, LNCS1294, pp. 513–525, 1997.

2. J.F. Dhem, F. Koeune, P.A. Leroux, P. Mestre, J.J. Quisquater, J.L. Willems, “A
Practical Implementation of the Timing Attack”, UCL Report, 1998, CG1998-1,
available at http://www.dice.ucl.ac.be/crypto/techreports.html

3. Information-Technology Promotion Agency, Japan and Telecomminications Ad-
vancementOrganization of Japan, “CRYPTREC Report 2001,” 2002.

4. J. Kelsey, B. Schneier, D. Wagner, C. Hall, “Side Channel Cryptanalysis of Product
Ciphers,” Journal of Computer Security, vol.8, pp. 141–158, 2000.

5. P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis,” CRYPTO’99,
LNCS1666, pp. 388–397, Springer-Verlag, 1999.

6. F. Koeune, J.J. Quisquater, “A Timing Attack against Rijndael,” UCL Report,
CG1999-1, 1999, available at http://www.dice.ucl.ac.be/crypto/techreports.html

7. National Institute of Standards and Technology, “ANSI C Reference Code V2.0
(October 24, 2000),” available at http://csrc.nist.gov/CryptoToolkit/aes/rijndael/

8. K. Ohkuma, S.Kawamura, H.Shimizu, H.Muratani, “Key Inference in a Side-
Channel Attack Based on Cache Miss,” The 2003 Symposium on Cyptography
and Information Security, 2003.(In Japanese)

9. D. Page, “Theoretical Use of Cache memory as a Cryptanalytic side-Channel,”
Technical Report CSTR-02-003, Department of Computer Science, University of
Bristol, June 2002 available at http://www.cs.bris.ac.uk/

10. B. Schneier, “APPLIED CRYPTOGRAPHY,” John Wiley & Sons, Inc. , 1996.
11. Y. Tsunoo, E. Tsujihara, K. Minematsu, H. Miyauchi, “Cryptanalysis of Block

Ciphers Implemented on Computers with Cache,” ISITA 2002, 2002.
12. “Data Encryption Standard (DES),” Federal Information Processing Standards

Publication 46-3, 1999, available at http://csrc.nist.gov/publications/fips/

Appendix: Secret-Key Recovering Method

The following describes the process for recovering a secret key. As is described
in the body of this paper, the following precondition must be satisfied to recover
a secret key.

76 Y. Tsunoo et al.

– The 4 bits from the MSB side of each key difference between S1 through S8
S-boxes of round 1 and round 16 can be obtained.

In the following, nth bit from the MSB side of the variable X is defined X[n].
We take the expanded key K1 of round 1 as an example:

K1 = K1[1]‖K1[2]‖ · · · ‖K1[48]

Next, based on key-schedule structure, the relationship between computed
key differences and secret-key information C and D can be represented in the
following way.

K1 ⊕ K16 = PC2(C1) ⊕ PC2(C16)
= PC2(C1) ⊕ PC2(LS(C1)) (4)

Using Eq. (4), C1 and D1 information can be computed in a step-by-step
manner. The following 16 equations are Eq. (4)s expressed on a bit basis.

K1[7] ⊕ K16[7] = C1[3] ⊕ C1[4]
K1[16] ⊕ K16[16] = C1[4] ⊕ C1[5]
K1[10] ⊕ K16[10] = C1[6] ⊕ C1[7]
K1[20] ⊕ K16[20] = C1[7] ⊕ C1[8]

K1[3] ⊕ K16[3] = C1[11] ⊕ C1[12]
K1[15] ⊕ K16[15] = C1[12] ⊕ C1[13]

K1[1] ⊕ K16[1] = C1[14] ⊕ C1[15]
K1[9] ⊕ K16[9] = C1[15] ⊕ C1[16]

K1[19] ⊕ K16[19] = C1[16] ⊕ C1[17]
K1[2] ⊕ K16[2] = C1[17] ⊕ C1[18]

K1[14] ⊕ K16[14] = C1[19] ⊕ C1[20]
K1[22] ⊕ K16[22] = C1[20] ⊕ C1[21]
K1[13] ⊕ K16[13] = C1[23] ⊕ C1[24]

K1[4] ⊕ K16[4] = C1[24] ⊕ C1[25]
K1[21] ⊕ K16[21] = C1[27] ⊕ C1[28]

K1[8] ⊕ K16[8] = C1[28] ⊕ C1[1]

Using the 16 equations above to guess 7 bits of C1[3], C1[6], C1[11], C1[14],
C1[19], C1[23], and C1[27] allows obtaining 16 bit of C1[4], C1[5], C1[7], C1[8],
C1[12], C1[13], C1[15], C1[16], C1[17], C1[18], C1[20], C1[21], C1[24], C1[25],
C1[28], and C1[1]. 28 bits, i.e. all bits of C1 are obtained by guessing 7 bits
in the way described above and then guessing the remaining 5 bits of C1; C1[2],
C1[9], C1[10], C1[22], C1[26].

D1 is treated similarly. 12-bit exhaustive search on D1[2], D1[5], D1[6], D1[7],
D1[8], D1[11], D1[16] D1[20] D1[21], D1[26], D1[27], and D1[28] allows determin-
ing the 28-bit of D1 .

Overall, the above uniquely recovers 56 bits of the secret key by guessing 24
bits.

	Introduction
	The Basics of Attack
	Cache Operation
	The Encryption Time and S-Box Operation
	Attack Model
	Non-elimination/Elimination Table Method

	Attack on DES
	DES Structure
	Attack Technique
	Results of Experiment
	Discussion
	Attack on Triple-DES

	Other Ciphers
	Results of the Experiment
	Discussion

	Conclusion

