
Yves Younan
Security Research Group

Research In Motion
yyounan@rim.com

C and C++: vulnerabilities, exploits and 
countermeasures

Monday, February 13, 2012

mailto:Yves.Younan@cs.kuleuven.ac.be
mailto:Yves.Younan@cs.kuleuven.ac.be


C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Introduction

C/C++ programs: some vulnerabilities exist which 
could allow code injection attacks

Code injection attacks allow an attacker to execute 
foreign code with the privileges of the vulnerable 
program

Major problem for programs written in C/C++
Focus will be on:

Illustration of code injection attacks
Countermeasures for these attacks

2

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities
Countermeasures
Conclusion

3

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Memory management in C/C++

Memory is allocated in multiple ways in C/C++:
Automatic (local variables in a function)
Static (global variables)
Dynamic (malloc or new)

Programmer is responsible for
Correct allocation and deallocation in the case of dynamic 

memory
Appropriate use of the allocated memory

 Bounds checks, type checks

4

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Memory management in C/C++

Memory management is very error prone
Typical bugs:

Writing past the bounds of the allocated memory
Dangling pointers: pointers to deallocated memory
Double frees: deallocating memory twice
Memory leaks: never deallocating memory

For efficiency reasons, C/C++ compilers don’t detect 
these bugs at run-time:
C standard states behavior of such programs is undefined

5

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Process memory layout

6

Arguments/Environment

Stack

Unused and 
Shared Memory

Heap

Static & Global Data

Program code

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows
Format string vulnerabilities
Integer errors

Countermeasures
Conclusion

7

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Code injection attacks

To exploit a vulnerability and execute a code injection 
attack, an attacker must:
Find a bug that can allow an attacker to overwrite 

interesting memory locations
Find such an interesting memory location
Copy target code in binary form into the memory of a 

program
 Can be done easily, by giving it as input to the program

Use the vulnerability to modify the location so that the 
program will execute the injected code

8

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Interesting memory locations 

Stored code addresses: modified -> code can be 
executed when the program loads them into the IP
Return address: address where the execution must 

resume when a function ends
Global Offset Table: addresses here are used to execute 

dynamically loaded functions
Virtual function table: addresses are used to know which 

method to execute (dynamic binding in C++)
Dtors functions: called when programs exit

9

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Interesting memory locations

Function pointers: modified -> when called, the 
injected code is executed

Data pointers: modified -> indirect pointer overwrites
First the pointer is made to point to an interesting location, 

when it is dereferenced for writing the location is 
overwritten

Attackers can overwrite many locations to perform an 
attack 

10

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows

 Stack-based buffer overflows
 Indirect Pointer Overwriting
 Heap-based buffer overflows and double free
 Overflows in other segments

Format string vulnerabilities
Integer errors

Countermeasures
11

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Buffer overflows: impact

Code red worm: estimated loss world-wide: $ 2.62 billion
Sasser worm: shut down X-ray machines at a swedish 

hospital and caused Delta airlines to cancel several 
transatlantic flights

Zotob worm: crashed the DHS’ US-VISIT program 
computers, causing long lines at major international 
airports

All three worms used stack-based buffer overflows
Stuxnet the worm that targeted Iran’s nuclear program 

used a buffer overflow as one of its vulnerabilities

12

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Buffer overflows: numbers

NIST national vulnerability database (jan-dec 2011):
631 buffer overflow vulnerabilities

 16.18% of total vulnerabilities reported
 509 of these have a high severity rating

• These buffer overflow vulnerabilities make up 30% of the 
vulnerabilities with high severity for the period

 Of the remaining 122 vulnerabilities, 116 are marked as having 
medium severity

13

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Buffer overflows: what?

Write beyond the bounds of an array
Overwrite information stored behind the array
Arrays can be accessed through an index or through a 

pointer to the array
Both can cause an overflow
Java: not vulnerable because it has no pointer 

arithmetic and does bounds checking on array 
indexing

14

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Buffer overflows: how?

How do buffer overflows occur?
By using an unsafe copying function (e.g. strcpy)
By looping over an array using an index which may be too 

high
Through integer errors

How can they be prevented?
Using copy functions which allow the programmer to 

specify the maximum size to copy (e.g. strncpy)
Checking index values
Better checks on integers

15

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Buffer overflows: example

16

void function(char *input) {
char str[80];
strcpy(str, input);

}

int main(int argc, char **argv) {
function(argv[1]);

}

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Shellcode

Small program in machine code representation
 Injected into the address space of the process
  int main() {
! ! !   printf("You win\n");
! ! !   exit(0)
! ! ! }
!   static char shellcode[] =
! ! ! "\x6a\x09\x83\x04\x24\x01\x68\x77" 
! ! ! "\x69\x6e\x21\x68\x79\x6f\x75\x20"
! ! ! "\x31\xdb\xb3\x01\x89\xe1\x31\xd2"
! ! ! "\xb2\x09\x31\xc0\xb0\x04\xcd\x80"
! ! ! "\x32\xdb\xb0\x01\xcd\x80"; 

17

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows

 Stack-based buffer overflows
 Indirect Pointer Overwriting
 Heap-based buffer overflows and double free
 Overflows in other segments

Format string vulnerabilities
Integer errors

Countermeasures
18

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

Stack is used at run time to manage the use of 
functions:
For every function call, a new record is created

 Contains return address: where execution should resume when 
the function is done

 Arguments passed to the function
 Local variables

 If an attacker can overflow a local variable he can find 
interesting locations nearby

19

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

Old unix login vulnerability
int login() { 
   char user[8], hash[8], pw[8]; 
   printf("login:"); 
   gets(user); 
   lookup(user,hash);
   printf("password:"); 
   gets(pw); 
   if (equal(hash, hashpw(pw))) return OK; 
   else return INVALID; 
} 

20

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

21

login:
  char user[8], hash[8], pw[8];
  printf(“username:”);
  gets(user);
  lookup(user,hash);
  printf(“password:”);
  gets(pw);
  if (equal(hash,hashpw(pw)))
    return OK;
  else
    return INVALID;

IP
Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

22

login:
  char user[8], hash[8], pw[8];
  printf(“username:”);
  gets(user);
  lookup(user,hash);
  printf(“password:”);
  gets(pw);
  if (equal(hash,hashpw(pw)))
    return OK;
  else
    return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

23

login:
  char user[8], hash[8], pw[8];
  printf(“username:”);
  gets(user);
  lookup(user,hash);
  printf(“password:”);
  gets(pw);
  if (equal(hash,hashpw(pw)))
    return OK;
  else
    return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

24

login:
  char user[8], hash[8], pw[8];
  printf(“username:”);
  gets(user);
  lookup(user,hash);
  printf(“password:”);
  gets(pw);
  if (equal(hash,hashpw(pw)))
    return OK;
  else
    return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

25

login:
  char user[8], hash[8], pw[8];
  printf(“username:”);
  gets(user);
  lookup(user,hash);
  printf(“password:”);
  gets(pw);
  if (equal(hash,hashpw(pw)))
    return OK;
  else
    return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

Attacker can specify a password longer than 8 
characters

Will overwrite the hashed password
Attacker enters:

AAAAAAAABBBBBBBB
Where BBBBBBBB = hashpw(AAAAAAAA)

Login to any user account without knowing the 
password

Called a non-control data attack
26

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

27

login:
  char user[8], hash[8], pw[8];
  printf(“username:”);
  gets(user);
  lookup(user,hash);
  printf(“password:”);
  gets(pw);
  if (equal(hash,hashpw(pw)))
    return OK;
  else
    return INVALID;

IP

Other stack frames

Return address login
Saved frame pointer login

hash

pw

user

FP

SP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

28

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP
IP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

29

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1SP

FPIP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overwritten return address

Injected code

Stack-based buffer overflows

30

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

Return address f1
Saved frame pointer f1

Buffer
SP

FP

IP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overwritten return address

Injected code

Stack-based buffer overflows

31

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

SP

FP
IP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Injected code

Stack-based buffer overflows

32

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

IP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

Exercises
From Gera’s insecure programming page

 http://community.corest.com/~gera/
InsecureProgramming/

For the following programs:
 Assume Linux on Intel 32-bit 
 Draw the stack layout right after  gets() has executed
 Give the input which will make the program print out “you win!”

33

Monday, February 13, 2012

http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/
http://community.corest.com/~gera/InsecureProgramming/


C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

 int main() {
! int cookie;
! char buf[80];

! printf("b: %x c: %x\n", &buf, &cookie);
! gets(buf);

! if (cookie == 0x41424344)
! ! printf("you win!\n");
}

34

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return address

Stack-based buffer overflows

35

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return address

Stack-based buffer overflows

36

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
ABCD

buf

perl -e 'print "A"x80; print "DCBA"' | ./s1

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows
 int main() {
! int cookie;
! char buf[80];

! printf("b: %x c: %x\n", &buf, &cookie);
! gets(buf);

}

buf is at location 0xbffffce4 in memory

37

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return address

Stack-based buffer overflows

38

main:

buf[80]

gets()
printf()

Stack

SP

FP

IP

cookie

...

Frame pointer
cookie

buf

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Stack-based buffer overflows

#define RET 0xbffffce4

int main() {
!  char buf[93];
   int ret;
   memset(buf, '\x90', 92);
   memcpy(buf, shellcode, strlen(shellcode));
   *(long *)&buf[88] = RET;
   buf[92] = 0;
   printf(buf);
}

39

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

0xbffffce4

Stack-based buffer overflows

40

main:

buf[80]

gets()
printf()

Stack

0xbffffce4

FP

IP

cookie

...

0x90909090
0x90909090

Injected code

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Finding inserted code

Generally (on kernels < 2.6) the stack will start at a 
static address

Finding shell code means running the program with a 
fixed set of arguments/fixed environment

This will result in the same address
Not very precise, small change can result in different 

location of code
Not mandatory to put shellcode in buffer used to 

overflow
Pass as environment variable

41

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Controlling the environment

Program name

High addr

Low addr

0,0,0,0
Stack start:
0xBFFFFFFF

Env var n
Env var n-1

…
Env var 0

Arg n
Arg n-1

…
Arg 0

Passing shellcode as 
environment variable:

Stack start - 4 null bytes 
- strlen(program name) - 
- null byte (program name)
- strlen(shellcode)

0xBFFFFFFF - 4 
- strlen(program name) - 
- 1
- strlen(shellcode)

42

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows

 Stack-based buffer overflows
 Indirect Pointer Overwriting
 Heap-based buffer overflows and double free
 Overflows in other segments

Format string vulnerabilities
Integer errors

43

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

Overwrite a target memory location by overwriting a 
data pointer
An attackers makes the data pointer point to the target 

location
When the pointer is dereferenced for writing, the target 

location is overwritten
If the attacker can specify the value of to write, he can 

overwrite arbitrary memory locations with arbitrary values

44

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

45

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP
IP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

data

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

46

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer

data

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

47

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Overwritten pointer

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

48

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Modified return address
Saved frame pointer f1

Overwritten pointer

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

49

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

FP

IP

f1:
buffer[]

overflow();

...

ptr = &data;

*ptr = value;

data
Injected code

f1:
buffer[]

overflow()
...

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

static unsigned int a = 0;

int main(int argc, char **argv) {
        int *b = &a;
        char buf[80];

        printf("buf: %08x\n", &buf);
        gets(buf);

        *b = strtoul(argv[1], 0, 16);
}
buf is at 0xbffff9e4

50

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

51

f1:
buffer[]

overflow()
...

Stack

SP

FP

IP

main:

buf[80]
gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

a

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

#define RET 0xbffff9e4+88

int main() {
  char buf[84];
  int ret;
  memset(buf, '\x90', 84);
  memcpy(buf, shellcode, strlen(shellcode));
  *(long *)&buffer[80] = RET;
  printf(buffer);
}

./exploit | ./s3 bffff9e4

52

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

53

f1:
buffer[]

overflow()
...

Stack

SP

FPIP

main:

buf[80]
gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Indirect Pointer Overwriting

54

f1:
buffer[]

overflow()
...

Stack

SP

FP
IP

main:

buf[80]
gets();

...

b = &a;

*b = argv[1];
Return address

Saved frame pointer

buf

b

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows

 Stack-based buffer overflows
 Indirect Pointer Overwriting
 Heap-based buffer overflows and double free
 Overflows in other segments

Format string vulnerabilities
Integer errors

55

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap-based buffer overflows

Heap contains dynamically allocated memory
Managed via malloc() and free() functions of the memory 

allocation library
A part of heap memory that has been processed by malloc 

is called a chunk
No return addresses: attackers must overwrite data 

pointers or function pointers
Most memory allocators save their memory management 

information in-band
Overflows can overwrite management information

56

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Used chunk

Heap management in dlmalloc

57

Size of prev. chunk
Size of chunk1

Chunk1

User data

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Free chunk: doubly linked list of free chunks

Heap management in dlmalloc

58

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap management in dlmalloc

Removing a chunk from the doubly linked list of free 
chunks:

This is:

59

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD; }

P->fd->bk = P->bk
P->bk->fd = P->fd

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap management in dlmalloc

60

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap management in dlmalloc

61

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap management in dlmalloc

62

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap management in dlmalloc

63

Size of prev. chunk
Size of chunk1

Chunk1

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap-based buffer overflows

64

Size of prev. chunk
Size of chunk1

Chunk1

User data

Size of chunk1
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap-based buffer overflows

65

Size of prev. chunk
Size of chunk1

Chunk1

Injected code

Size of chunk1
Size of chunk2

Chunk2

Old user data

fwd: pointer to target
bck: pointer to inj. code

Return address

call f1
...

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap-based buffer overflows

66

Size of prev. chunk
Size of chunk1

Chunk1

Injected code

Size of chunk1
Size of chunk2

Chunk2

Old user data

fwd: pointer to target
bck: pointer to inj. code

Overwritten return address

After unlink

call f1
...

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Dangling pointer references

Pointers to memory that is no longer allocated
Dereferencing is unchecked in C
Generally leads to crashes
Can be used for code injection attacks when memory 

is deallocated twice (double free)
Double frees can be used to change the memory 

management information of a chunk

67

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

68

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

69

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

70

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

71

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Size of prev. chunk
Size of chunk3

Chunk3

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

72

Unlink: chunk stays linked because it points to itself

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

73

 If unlinked to reallocate: attackers can now write to 
the user data part 

Size of prev. chunk
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

74

 It is still linked in the list too, so it can be unlinked 
again

Size of prev. chunk
Size of chunk2

Chunk2

Injected code

Forward pointer
Backward pointer

Return address

call f1
...

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Double free

75

After second unlink

Size of prev. chunk
Size of chunk2

Chunk2

Injected code

Forward pointer
Backward pointer

Overwritten return address

call f1
...

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows

 Stack-based buffer overflows
 Indirect Pointer Overwriting
 Heap-based buffer overflows and double free
 Overflows in other segments

Format string vulnerabilities
Integer errors

76

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overflows in the data/bss

Data segment contains global or static compile-time 
initialized data

Bss contains global or static uninitialized data
Overflows in these segments can overwrite:

Function and data pointers stored in the same  segment
Data in other segments

77

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overflows in the data/bss

78

Data 

Ctors

ctors: pointers to functions to 
execute at program start

dtors: pointers to functions to 
execute at program finish

GOT: global offset table: used 
for dynamic linking: pointers to 
absolute addresses 

Dtors

GOT

BSS

Heap

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overflow in the data segment

char buf[256]={1};

int main(int argc,char **argv) {
! strcpy(buf,argv[1]);
}

79

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overflow in the data segment

80

Data 

Ctors

0x00000000Dtors

GOT

BSS

buf[256] 

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overflow in the data section

 int main (int argc, char **argv) {
char buffer[476];
char *execargv[3] = { "./abo7", buffer, NULL };
char *env[2] = { shellcode, NULL };
int ret;
ret = 0xBFFFFFFF - 4 - strlen (execargv[0]) - 1 
- strlen (shellcode);
memset(buffer, '\x90', 476);
*(long *)&buffer[472] = ret;
execve(execargv[0],execargv,env);
}

81

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overflow in the data segment

82

Data 

Ctors

RETDtors

GOT

BSS

buf[256] 

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows
Format string vulnerabilities
Integer errors

Countermeasures
Conclusion

83

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Format string vulnerabilities

Format strings are used to specify formatting of 
output: 
printf(“%d is %s\n”, integer, 
string); -> “5 is five”

Variable number of arguments
Expects arguments on the stack
Problem when attack controls the format string:

printf(input);
should be printf(“%s”, input);

84

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Format string vulnerabilities

Can be used to read 
arbitrary values from 
the stack
“%s %x %x”
Will read 1 string and 

2 integers from the 
stack

85

Stack

Other stack frames

Arguments printf: 
format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0
Saved frame pointer f0

Local variable f0
string

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Format string vulnerabilities

Can be used to read 
arbitrary values from 
the stack
“%s %x %x”
Will read 1 string and 

2 integers from the 
stack

86

Stack

Other stack frames

Arguments printf: 
format string

Return address printf

SP

FP
Saved frame ptr printf

Return address f0
Saved frame pointer f0

Local variable f0
string

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Format string vulnerabilities

Format strings can also write data:
%n will write the amount of (normally) printed characters 

to a pointer to an integer
“%200x%n” will write 200 to an integer

Using %n, an attacker can overwrite arbitrary memory 
locations:
The pointer to the target location can be placed some 

where on the stack
Pop locations with “%x” until the location is reached
Write to the  location with “%n”

87

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows
Format string vulnerabilities
Integer errors

 Integer overflows
 Integer signedness errors

Countermeasures
Conclusion

88

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Integer overflows
 For an unsigned 32-bit integer, 2^32-1 is the largest value it 

can contain
 Adding 1 to this, will wrap around to 0.
 Can cause buffer overflows

 malloc(0) - result is implementation defined: either NULL is 
returned or malloc will allocate the smallest possible chunk: in 
Linux: 8 bytes

89

int main(int argc, char **argv){
unsigned int a;
char *buf;
a = atol(argv[1]);
buf = (char*) malloc(a+1); 

}

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Code injection attacks
Buffer overflows
Format string vulnerabilities
Integer errors

 Integer overflows
 Integer signedness errors

Countermeasures
Conclusion

90

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Integer signedness errors

Value interpreted as both signed and unsigned

For a negative a:
In the condition, a is smaller than 100
Strncpy expects an unsigned integer: a is now a large 

positive number

91

int main(int argc, char **argv) {
int a;
char buf[100];
a = atol(argv[1]);
if (a < 100)

strncpy(buf, argv[2], a); }

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities
Countermeasures

Safe languages
Probabilistic countermeasures

Separation and replication countermeasures
Paging-based countermeasures
Bounds checkers
Verification countermeasures

Conclusion

92

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Safe languages

Change the language so that correctness can be 
ensured
Static analysis to prove safety
If it can’t be proven safe statically, add runtime checks to 

ensure safety (e.g. array unsafe statically -> add bounds 
checking)

Type safety: casts of pointers are limited
Less programmer pointer control

93

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Safe languages

Runtime type-information
Memory management: no explicit management

 Garbage collection: automatic scheduled deallocation
 Region-based memory management: deallocate regions as a 

whole, pointers can only be dereferenced if region is live

Focus on languages that stay close to C

94

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Safe languages

Cyclone: Jim et al.
Pointers:

 NULL check before dereference of pointers (*ptr)
 New type of pointer: never-NULL (@ptr)
 No artihmetic on normal (*) & never-NULL (@) pointers
 Arithmetic allowed on special pointer type (?ptr): contains extra 

bounds information for bounds check
 Uninitialized pointers can’t be used

Region-based memory management
Tagged unions: functions can determine type of 

arguments: prevents format string vulnerabilities

95

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Safe languages

CCured: Necula et al.
Stays as close to C as possible
Programmer has less control over pointers: static analysis 

determines pointer type 
 Safe: no casts or arithmetic; only needs NULL check
 Sequenced: only arithmetic; NULL and bounds check
 Dynamic: type can’t be determined statically; NULL, bounds 

and run-time type check

Garbage collection: free() is ignored

96

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview
Memory management in C/C++
Vulnerabilities
Countermeasures

Safe languages
Probabilistic countermeasures

Separation and replication countermeasures
Paging-based countermeasures
Bounds checkers
Verification countermeasures

Conclusion

97

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Probabilistic countermeasures

Based on randomness
Canary-based approach

Place random number in memory
Check random number before performing action
If random number changed an overflow has occurred

Obfuscation of memory addresses
Address Space Layout Randomization
 Instruction Set Randomization

98

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Canary-based countermeasures

StackGuard (SG): Cowan et al.
Places random number before the return address when 

entering function
Verifies that the random number is unchanged when 

returning from the function
If changed, an overflow has occurred, terminate program

99

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

StackGuard (SG)

100

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer

data

Canary

Canary

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return address f1
Saved frame pointer f1

StackGuard (SG)

101

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FPIP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Injected code

Pointer

data

Canary

Canary

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Canary-based countermeasures

Propolice (PP): Etoh & Yoda
Same principle as StackGuard
Protects against indirect pointer overwriting by 

reorganizing the stack frame:
 All arrays are stored before all other data on the stack (i.e. right 

next to the random value)
 Overflows will cause arrays to overwrite other arrays or the 

random value

Part of GCC >= 4.1
 ‘Stack Cookies in Visual Studio

102

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Propolice (PP)

103

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

Pointer
data

Canary

Canary

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return address f1
Saved frame pointer f1

Canary

Propolice (PP)

104

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Buffer

Pointer
data

Canary

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap protector (HP)

105

Size of prev. chunk
Size of chunk1

Chunk1

User data

Size of chunk1
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Checksum

Checksum

Heap protector: Robertson 
et al.

Adds checksum to the chunk 
information

Checksum is XORed with a 
global random value

On allocation checksum is 
added

On free (or other operations) 
checksum is calculated, 
XORed, and compared

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Contrapolice (CP)

106

Size of prev. chunk
Size of chunk1

Chunk1

User data

Size of chunk1
Size of chunk2

Chunk2

Old user data

Forward pointer
Backward pointer

Canary1

Canary1
Canary2

Canary2

Contrapolice: Krennmair
Stores a random value before 

and after the chunk
Before exiting from a string 

copy operation, the random 
value before is compared to 
the random value after

If they are not the same, an 
overflow has occured

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Problems with canaries

Random value can leak
For SG: Indirect Pointer Overwriting
For PP: overflow from one array to the other (e.g. 

array of char overwrites array of pointer)
For HP, SG, PP: 1 global random value
CP: different random number per chunk
CP: no protection against overflow in loops

107

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Probabilistic countermeasures

Obfuscation of memory addresses
Also based on random numbers
Numbers used to ‘encrypt’ memory locations
Usually XOR

 a XOR b = c
 c XOR b = a

108

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Obfuscation of memory addresses

PointGuard: Cowan et al.
Protects all pointers by encrypting them (XOR) with a 

random value
Decryption key is stored in a register
Pointer is decrypted when loaded into a register
Pointer is encrypted when loaded into memory
Forces the compiler to do all memory access via registers
Can be bypassed if the key or a pointer leaks
Randomness can be lowered by using a partial overwrite

109

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Partial overwrite

110

XOR:
0x41424344 XOR 0x20304050 = 0x61720314
 However, XOR ‘encrypts’ bitwise

0x44 XOR 0x50 = 0x14
If injected code relatively close:

1 byte: 256 possibilities
2 bytes: 65536  possibilities

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Partial overwrite

111

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Other Local variables f0

SP

FP

IP
f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Buffer

 Encrypted pointer

Data

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Partial overwrite

112

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Other Local variables f0

SP

FPIP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Return address f1
Saved frame pointer f1

Injected code

Data

 Encrypted pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Modified return address

Partial overwrite

113

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Other Local variables f0

SP

FPIP

f1:

buffer[]
overflow();

...

ptr = &data;

*ptr = value;

Arguments f1

Saved frame pointer f1

Injected code

Data

 Encrypted pointer

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Probabilistic countermeasures

Address space layout randomization: PaX team
Compiler must generate PIC
Randomizes the base addresses of the stack, heap, code 

and shared memory segments
Makes it harder for an attacker to know where in memory 

his code is located
Can be bypassed if attackers can print out memory 

addresses: possible to derive base address

 Implemented in Windows Vista / Linux >= 2.6.12

114

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Heap-spraying

Technique to bypass ASLR
 If an attacker can control memory allocation in the 

program (e.g. in the browser via javascript)
Allocate a significant amount of memory

For example: 1GB or 2GB
 Fill memory with a bunch of nops, place shell code at the end
Reduces amount of randomization offered by ASLR
 Jumping anywhere in the nops will cause the shellcode to be 

executed eventually

115

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Probabilistic countermeasures

Randomized instruction sets: Barrantes et al./Kc et al.
Encrypts instructions while they are in memory
Decrypts them when needed for execution
If attackers don’t know the key their code will be decrypted 

wrongly, causing invalid code execution
If attackers can guess the key, the protection can be 

bypassed
High performance overhead in prototypes: should be 

implemented in hardware

116

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Probabilistic countermeasures

Rely on keeping memory secret
Programs that have buffer overflows could also have 

information leakage
Example:

char buffer[100];
strncpy(buffer, input, 100);
Printf(“%s”, buffer);

Strncpy does not NULL terminate (unlike strcpy), printf 
keeps reading until a NULL is found

117

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities
Countermeasures

Safe languages
Probabilistic countermeasures

Separation and replication countermeasures
Paging-based countermeasures
Bounds checkers
Verification countermeasures

Conclusion

118

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Separation and replication of information

Replicate valuable control-flow information
Copy control-flow information to other memory
Copy back or compare before using

Separate control-flow information from other data
Write control-flow information to other places in memory
Prevents overflows from overwriting control flow 

information

These approaches do not rely on randomness

119

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Separation of information

Dnmalloc: Younan et al.
Does not rely on random numbers
Protection is added by separating the chunk information 

from the chunk
Chunk information is stored in separate regions protected 

by guard pages
Chunk is linked to its information through a hash table
Fast: performance impact vs. dlmalloc: -10% to +5%
Used as the default allocator for Samhein (open source 

IDS)

120

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Dnmalloc

121

Control data Regular data

Management information

Low addresses

High addresses

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Heap Data

Management information
Management information
Management information

Chunkinfo region
Guard page

Ptr to chunkinfo
Ptr to chunkinfo
Ptr to chunkinfo
Ptr to chunkinfo

Guard page
Hashtable

Ptr to chunkinfo

Management information

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Separation of information

Multistack: Younan et al.
Does not rely on random numbers
Separates the stack into multiple stacks, 2 criteria:

 Risk of data being an attack target (target value)
 Risk of data being used as an attack vector  (source value)

• Return addres: target: High; source: Low
• Arrays of characters: target: Low; source: High

Default: 5 stacks, separated by guard pages
 Stacks can be reduced by using selective bounds checking: to 

reduce source risk: ideally 2 stacks

Fast: max. performance overhead: 2-3% (usually 0)

122

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

“Dnstack”

Stacks are at a fixed location from each other
 If source risk can be reduced: maybe only 2 stacks

Map stack 1,2 onto stack one
Map stack 3,4,5 onto stack two

123

Array of 
characters

Guard page

Structures 
(with char. 

array)

Array of 
structures 
(with char 

array)

Guard page

Structs (no 
char array)

Array of 
struct (no 

char array)
Arrays
Alloca()
Floats

Guard page

Array of 
pointers

Structures 
(no arrays)

Integers
Guard page

Pointers

Saved 
registers

Guard page

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities
Countermeasures

Safe languages
Probabilistic countermeasures

Separation and replication countermeasures
Paging-based countermeasures
Bounds checkers
Verification countermeasures

Conclusion

124

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Paging-based countermeasure  
Non-executable memory (called NX or XN)

Pages of memory can be marked executable, writeable 
and readable

Older Intel processors would not support the executable 
bit which meant that readable meant executable

Eventually the bit was implemented, allowing the OS to 
mark data pages (such as the stack and heap writable but 
not executable)

OpenBSD takes it further by implementing W^X (writable 
XOR executable)

Programs doing JIT have memory that is both executable 
and writable

125

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overwritten return address

Injected code

Stack-based buffer overflowed on NX

126

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

SP

FP
IP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Injected code

Stack-based buffer overflow on NX

127

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0
SP

IP

crash: memory
not executable

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bypassing non-executable memory

Early exploits would return to existing functions (called 
return-to-libc) to bypass these countermeasures
Places the arguments on the stack and then places the 

address of the function as the return addres
 This simulates a function call

For example calling system(“/bin/bash”) would place the 
address of the executable code for system as return 
address and would place a pointer to the string /bin/bash 
on the stack



128

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Overwritten return address

Injected code

Paging-based countermeasures

129

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

Local variables f0

Arguments f1

Return address f1
Saved frame pointer f1

Buffer
SP

FP

IP

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Paging-based countermeasures

130

Overwritten return address

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

string “/bin/bash”

Pointer to /bin/bash

SP

FP

IP

system:
...

int 0x80

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return oriented programming
More generic return-to-libc
Returns to existing assembly code, but doesn’t require 

it to be the start of the function:
Any code snippet that has the desired functionality followed 

by a ret can be used
 For example:

• Code snippet that does pop eax, followed by ret
• Next code snippet does mov ecx, eax followed by ret
• Final code snippet does jmp ecx
• Code gets executed at the address in ecx

Shown to be Turing complete for complex libraries like 
libc

131

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return oriented programming

132

Overwritten return address

f0:
...

call f1
...

f1:
buffer[]

overflow()
...

Stack

Other stack frames

Return address f0
Saved frame pointer f0

return after pop
To be popped in eax

SP

FP

IP

f2:
...

pop eax
ret

return after mov

f3:
...

mov ecx, eax
ret

f4:
...

jmp ecx
...

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return oriented programming
x86 has variable length instructions, ranging from 1 to 

17 bytes.
ROP doesn’t have to jump to the beginning of an 

instruction
The middle of an instruction could be interpreted as an 

instruction that has the desired functionality, followed 
by a ret (either as part of that instruction or the 
following instruction)

Also possible that jumping into a middle of an 
instruction causes subsequent instructions to be 
interpreted differently

133

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Return oriented programming
x86 has variable length instructions, ranging from 1 to 

17 bytes.
ROP doesn’t have to jump to the beginning of an 

instruction
The middle of an instruction could be interpreted as an 

instruction that has the desired functionality, followed 
by a ret (either as part of that instruction or the 
following instruction)

Also possible that jumping into a middle of an 
instruction causes subsequent instructions to be 
interpreted differently

134

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

00 f7 add bh, dh

c7 07 00 00 00 0f mov  edi, 0x0F000000

95 xchg eax, ebp

45 inc ebp

c3 ret

Return oriented programming

 Example adapted from “Return-oriented Programming: Exploitation without Code Injection” by Buchanan et al.

135

movl [ebp-44], 0x00000001

test edi, 0x00000007

setnzb [ebp-61]

c7 45 d4 01 00 00 00machine code:

f7 c7 07 00 00 00machine code:

0f 95 45 c3machine code:

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities
Countermeasures

Safe languages
Probabilistic countermeasures

Separation and replication countermeasures
Paging-based countermeasures
Bounds checkers
Verification countermeasures

Conclusion

136

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

Ensure arrays and pointers do not access memory 
out of bounds through runtime checks

Slow:
Bounds checking in C must check all pointer operations, 

not just array index accesses (as opposed to Java)
Usually too slow for production deployment

Some approaches have compatibility issues
Two major approaches: add bounds info to pointers, 

add bounds info to objects

137

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

Add bounds info to pointers
Pointer contains

 Current value
 Upper bound
 Lower bound

Two techniques
 Change pointer representation: fat pointers

• Fat pointers are incompatible with existing code (casting)

 Store extra information somewhere else, look it up

Problems with existing code: if (global) pointer is 
changed, info is out of sync

138

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

Add bounds info to objects
Pointers remain the same
Look up bounds information based on pointer’s value
Check pointer arithmetic:

 If result of arithmetic is larger than base object + size -> 
overflow detected

 Pointer use also checked to make sure object points to valid 
location

Other lighter-weight approaches

139

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

Safe C: Austin et al.
Safe pointer: value (V), pointer base (B), size (S), 

class (C), capability (CP)
V, B, S used for spatial checks
C and CP used for temporal checks

 Prevents dangling pointers
 Class: heap, local or global, where is the memory allocated
 Capability: forever, never

Checks at pointer dereference
 First temp check: is the pointer still valid?
 Bounds check: is the pointer within bounds? 

140

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

Jones and Kelly
Austin not compatible with existing code
Maps object size onto descriptor of object (base, size)
Pointer dereference/arithmetic

 Check descriptor
 If out of bounds: error

Object created in checked code
 Add descriptor

Pointers can be passed to existing code

141

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

CRED: Ruwase and Lam
Extension of Jones and Kelly
Problems with pointer arithmetic

 1) pointer goes out-of-bounds, 2) is not dereferenced, 3) 
goes in-bounds again

 Out-of-bounds arithmetic causes error 
 Many programs do this

Create OOB object when going out-of-bounds
 When OOB object dereferenced: error
 When pointer arithmetic goes in-bounds again, set to 

correct value
142

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Bounds checkers

PariCheck: Younan et al.
Bounds are stored as a unique number over a 

region of memory
Object inhabits one or more regions, each region 

has the same unique number
Check pointer arithmetic

Look up unique number of object that pointer is 
pointing to, compare to unique number of the result of 
the arithmetic, if different -> overflow

Faster than existing bounds checkers: ~50% overhead
143

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities
Countermeasures

Safe languages
Probabilistic countermeasures

Separation and replication countermeasures
Paging-based countermeasures
Bounds checkers
Verification countermeasures

Conclusion

144

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Verification countermeasures

Ensure that the values in use are sane
A typical example of this is safe unlinking

Safe unlinking was introduced to various heap 
allocators to ensure that the doubly linked list is sane 
before being used

For example before unlinking, do the following checks:
P->fd->bk should be equal to P
P->bk->fd should also be equal to P

 If both conditions hold, then proceed with 
unlinking

145

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Lecture overview

Memory management in C/C++
Vulnerabilities

Buffer overflows
Format string vulnerabilities
Integer errors

Countermeasures
Conclusion

146

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Countermeasures in modern OSes

Various countermeasures have been deployed in 
modern operating systems
ASLR
StackGuard
Safe unlinking
Non-executable memory

These have made exploitations of these attacks 
significantly harder

However, attackers have found various ways of 
bypassing these countermeasures

147

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Embedded and mobile devices

Vulnerabilities also present and exploitable on 
embedded devices

 iPhone LibTIFF vulnerability massively exploited to 
unlock phones

Almost no countermeasures 
Windows CE6 has stack cookies

Different priorities: performance is much more 
important on embedded devices

Area of very active research

148

Monday, February 13, 2012



C and C++: vulnerabilities, exploits and countermeasures March, 2012Yves Younan / 149

Conclusion

Many attacks, countermeasures, counter-
countermeasures, etc. exist

Search for good and performant countermeasures to 
protect C continues

Best solution: switch to a safe language, if possible
More information:

 Y. Younan, W. Joosen and F. Piessens. Code injection in C and C++: A 
survey of vulnerabilities and Countermeasures

 Y. Younan. Efficient countermeasures for software vulnerabilities due to 
memory management errors 

 Ú. Erlingsson, Y. Younan, F. Piessens, Low-level software security by 
example

149

Monday, February 13, 2012


