
Hierarchical Multiprocessor

CPU Reservations for the Linux

Kernel

Fabio Checconi, Tommaso Cucinotta,
Dario Faggioli and Giuseppe Lipari

December 10, 2009

Goal

Support arbitrary CPU reservations in the Linux kernel, while
preserving POSIX compliance and the current scheduler
structure as much as possible.

2 / 32

CPU Scheduling in the IRMOS Project

IRMOS uses KVM to deploy its VMUs.

KVM is a userspace program from the scheduler’s perspective.

3 / 32

KVM Architecture

userspace

kernel

qemu−kvm guest mode

KVM

4 / 32

Scheduling Requirements

CPU is Yet Another Resource, (on the host side) we need a
scheduler:

◮ that can handle multiprocessor virtual machines (KVM is
used to deploy VMs hosting services);

◮ that supports hard limits (people buy service time);

◮ that provides predictable response times (real-time
services must respect real-time constraints).

5 / 32

Requirements Remapping

Almost everything is already there...

◮ each VM is put in its own cgroup;

◮ sched rt and throttling expose an interface to support
predictable service and hard limits.

Our paper describes how we enhanced throttling basing it on
EDF and on a new system model/analysis recently introduced
by Bini et al.

6 / 32

CGroup Interface

Common Grouping infrastructure:

◮ each task belongs to a group (by default the root one).

◮ Groups are organized hierarchically.

◮ Each resource (CPU, network, disk etc.) has its own
controller, granting access to tasks according to the
group they belong to.

7 / 32

System Model

Most of what follows is borrowed from “The Multi Supply
Function Abstraction for Multiprocessors,” by Bini et al.,
RTCSA ’09.

◮ Tasks belonging to the same application are grouped in
the same task group;

◮ each task group receives service from a set of
independent virtual processors νi ,1,...,m;

◮ whenever a virtual processor is selected for execution, a
task belonging to its task group is scheduled.

8 / 32

Block Diagram

π1 π2

ν1,1 ν1,2 ν2,1 ν2,2

τ1,1 τ1,2 τ1,3 τ2,1 τ2,2

Γ1 Γ2

Physical Processors

9 / 32

Task Model

T

C

D

◮ C—computation time

◮ D—deadline

◮ T—period (periodic)/minimum interarrival time
(sporadic)

10 / 32

Servers

Servers are used to provide CPU reservations to tasks or to
sets of tasks.

◮ Q—budget (how much execution time the server gets
every P)

◮ P—period (how often the server gets its Q)

11 / 32

α, ∆

To characterize how each virtual processor receives service
from the physical processors it is scheduled on, we use the
(α, ∆) model, which characterizes the service in terms of
bandwidth α, and delay ∆.

For the H-CBS server we’re using, we have:

α =
Q

P
∆ = 2P − 2Q.

12 / 32

α, ∆ (2)

time interval

s
u
p
p
ly

α

∆

13 / 32

Scheduling Algorithm

The system model allows for a number of possible
configurations; we opted for:

◮ Partitioned, hierarchical Hard-CBS to schedule virtual
processors on physical CPUs;

◮ Global fixed priority scheduling among tasks on the same
task group;

◮ Static, symmetric bandwidth assignment among virtual
processors: If a task group is assigned Qi/Pi all of its
virtual processors will get Qi/Pi .

14 / 32

H-CBS

The Hard-CBS is a non workconserving scheduling algorithm
based on EDF.

Each scheduled entity (virtual processors in our case) can be
assigned a share of the physical processor time, in the form of
Q time units every P. If an entity requires more than allocated
it is throttled.

15 / 32

M(α, ∆)

Bini et al. introduced a way of composing multiple single CPU
reservations into a single multiserver one.

Using their and other known results allows us to derive a
schedulability test for our algorithm.

16 / 32

Interfering Workload

For each task τk we need to consider the interfering workload

from higher priority tasks:

W
FP

k =
k−1
∑

i=1

W k,i ,

where

W k,i = Nk,iCi + min{Ci , Dk + Di − Ci − Nk,iTi},

with Nk,i =
⌊

Dk+Di−Ci

Ti

⌋

.

17 / 32

Interference

Now we can consider how the interfering workload is
distributed among the various virtual processors, and find an
upper bound to the interference:

I k = L0 +
m

∑

ℓ=1

min

Lℓ,
max

(

0, Wk −
∑ℓ−1

p=1 pLp

)

ℓ

 .

Lℓ is the duration, in [0, Dk), over which service is provided by
ℓ virtual processors in parallel.

18 / 32

Schedulability

A task set Γ = {τi}i=1,...,n is schedulable by a fixed priority
algorithm on a set of virtual processors V = {νj}j=1,...,m

modeled by {Zj}j=1,...,m, if

∀k ∈ N : 1 ≤ k ≤ n Ck + I
FP

k ≤ Dk ,

with {Lℓ}ℓ=0,...,m calculated as follows:

L0 = Dk − Z1(Dk)

Lℓ = Zℓ(Dk) − Zℓ+1(Dk)

Lm = Zm(Dk).

19 / 32

Scheduling in Linux

POSIX-like scheduling:

◮ 100 priority levels;

◮ several scheduling classes (SCHED RR, SCHED FIFO,

SCHED OTHER);

◮ strict priority service;

◮ SCHED RR and SCHED FIFO control how tasks with the
same priority are handled;

◮ SCHED OTHER have priority 0 (lowest) and are scheduled
with CFS (a fair queueing variant).

20 / 32

The Scheduler

◮ One runqueue per CPU;

◮ priority arrays for RT tasks (one list per prio level, a
bitmap to identify nonempty prio levels);

◮ a tree for CFS tasks;

◮ global enforcement of priorities on SMP;

◮ throttling of RT tasks.

21 / 32

Throttling Interface

To create a cgroup:

mount -t cgroup -o cpu cgroup /dev/cgroup

cd /dev/cgroup

mkdir tg0

To limit its tasks to use no more than Q = 20ms every
P = 100ms:

echo 100000 > tg0/cpu.rt_period_us

echo 20000 > tg0/cpu.rt_runtime_us

22 / 32

Throttling vs. Server Scheduling

◮ Almost the same interface;

◮ throttling only limits the CPU time consumed by tasks, it
does not enforce its provisioning (except in corner cases).

23 / 32

Implementation

◮ Use an RB tree to store groups, ordered by priorities or

deadlines (boosting can promote a group to a fixed
priority);

◮ changed the rt bandwidth timer to be per-runqueue;

◮ added a task runqueue per each task group, to store its
child tasks, which cannot be stored together with child
runqueues (they have no deadline).

24 / 32

Tree Sorting

static inline int rt_rq_before(struct rt_rq *a,

struct rt_rq *b)

{

if ((a->rt_nr_boosted && b->rt_nr_boosted) ||

global_rt_runtime() == RUNTIME_INF)

return rt_rq_prio(a) < rt_rq_prio(b);

if (a->rt_nr_boosted)

return 1;

if (b->rt_nr_boosted)

return 0;

return a->rt_deadline - b->rt_deadline < 0;

}

25 / 32

Task Runqueues

The only user-visible change is the introduction of task
runqueues, needed to keep tasks separed from groups (groups
have priorities only when boosted).

In addition to specify a Q/P assignment for each cgroup, the
user has to specify an assignment for its task runqueues.

The bandwidth used for task runqueues cannot be used for
groups.

26 / 32

Interface Implications

To create a task group, as usual:

mount -t cgroup cgroup /dev/cgroup

cd /dev/cgroup

mkdir tg0

To assign Q = 20ms over P = 100ms to its tasks:

echo 100000 > tg0/cpu.rt_period_us

echo 20000 > tg0/cpu.rt_runtime_us

echo 100000 > tg0/cpu.rt_task_period_us

echo 20000 > tg0/cpu.rt_task_runtime_us

27 / 32

Data Structures

struct rt_edf_tree {

struct rb_root rb_root;

struct rb_node rb_leftmost;

};

struct rt_rq {

struct prio_array active;

u64 rt_deadline;

struct hrtimer rt_period_timer;

/* ... */

};

28 / 32

Data Structures (2)

struct task_rt_group {

struct rt_rq **rt_rq;

struct rt_bandwidth rt_bandwidth;

struct task_group *tg;

};

struct task_group {

struct task_rt_group rt_rq_group;

struct task_rt_group rt_task_group;

/* ... */

};

29 / 32

Overheads

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

check_preem
pt_curr_rt

task_tick_rt

enqueue_task_rt

dequeue_task_rt

put_prev_task_rt

pick_next_task_rt

D
ur

at
io

n
(n

s)
Throttling

EDF Throttling
EDF Thr. + hrtick

30 / 32

HRTick

 0

 200

 400

 600

 800

 1000

 1200

 1400

check_preem
pt_curr_rt

task_tick_rt

enqueue_task_rt

dequeue_task_rt

put_prev_task_rt

pick_next_task_rt

D
ur

at
io

n
(n

s)
EDF Throttling

EDF Thr. + hrtick

31 / 32

Future Work

From an academic POV:

◮ Give a formal treatment to shared resources access;

◮ evaluate bandwidth partitioning alternatives.

About the code:

◮ evaluate overheads more extensively;

◮ one cpupri per task group;

◮ auto-determined bandwidth for task runqueues;

◮ and many, many others...

32 / 32

	Background
	The Scheduling Algorithm
	Implementation
	Conclusion

