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Goal

Support arbitrary CPU reservations in the Linux kernel, while
preserving POSIX compliance and the current scheduler
structure as much as possible.
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CPU Scheduling in the IRMOS Project

IRMOS uses KVM to deploy its VMUs.

KVM is a userspace program from the scheduler’s perspective.
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KVM Architecture
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Scheduling Requirements

CPU is Yet Another Resource, (on the host side) we need a
scheduler:

◮ that can handle multiprocessor virtual machines (KVM is
used to deploy VMs hosting services);

◮ that supports hard limits (people buy service time);

◮ that provides predictable response times (real-time
services must respect real-time constraints).

5 / 32



Requirements Remapping

Almost everything is already there...

◮ each VM is put in its own cgroup;

◮ sched rt and throttling expose an interface to support
predictable service and hard limits.

Our paper describes how we enhanced throttling basing it on
EDF and on a new system model/analysis recently introduced
by Bini et al.
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CGroup Interface

Common Grouping infrastructure:

◮ each task belongs to a group (by default the root one).

◮ Groups are organized hierarchically.

◮ Each resource (CPU, network, disk etc.) has its own
controller, granting access to tasks according to the
group they belong to.
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System Model

Most of what follows is borrowed from “The Multi Supply
Function Abstraction for Multiprocessors,” by Bini et al.,
RTCSA ’09.

◮ Tasks belonging to the same application are grouped in
the same task group;

◮ each task group receives service from a set of
independent virtual processors νi ,1,...,m;

◮ whenever a virtual processor is selected for execution, a
task belonging to its task group is scheduled.
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Block Diagram
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Task Model

T
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◮ C—computation time

◮ D—deadline

◮ T—period (periodic)/minimum interarrival time
(sporadic)
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Servers

Servers are used to provide CPU reservations to tasks or to
sets of tasks.

◮ Q—budget (how much execution time the server gets
every P)

◮ P—period (how often the server gets its Q)
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α, ∆

To characterize how each virtual processor receives service
from the physical processors it is scheduled on, we use the
(α, ∆) model, which characterizes the service in terms of
bandwidth α, and delay ∆.

For the H-CBS server we’re using, we have:

α =
Q

P
∆ = 2P − 2Q.
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α, ∆ (2)

time interval

s
u
p
p
ly

α

∆

13 / 32



Scheduling Algorithm

The system model allows for a number of possible
configurations; we opted for:

◮ Partitioned, hierarchical Hard-CBS to schedule virtual
processors on physical CPUs;

◮ Global fixed priority scheduling among tasks on the same
task group;

◮ Static, symmetric bandwidth assignment among virtual
processors: If a task group is assigned Qi/Pi all of its
virtual processors will get Qi/Pi .
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H-CBS

The Hard-CBS is a non workconserving scheduling algorithm
based on EDF.

Each scheduled entity (virtual processors in our case) can be
assigned a share of the physical processor time, in the form of
Q time units every P. If an entity requires more than allocated
it is throttled.
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M(α, ∆)

Bini et al. introduced a way of composing multiple single CPU
reservations into a single multiserver one.

Using their and other known results allows us to derive a
schedulability test for our algorithm.
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Interfering Workload

For each task τk we need to consider the interfering workload

from higher priority tasks:

W
FP

k =
k−1
∑

i=1

W k,i ,

where

W k,i = Nk,iCi + min{Ci , Dk + Di − Ci − Nk,iTi},

with Nk,i =
⌊

Dk+Di−Ci

Ti

⌋

.
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Interference

Now we can consider how the interfering workload is
distributed among the various virtual processors, and find an
upper bound to the interference:

I k = L0 +
m

∑

ℓ=1

min



Lℓ,
max

(

0, Wk −
∑ℓ−1

p=1 pLp

)

ℓ



 .

Lℓ is the duration, in [0, Dk), over which service is provided by
ℓ virtual processors in parallel.

18 / 32



Schedulability

A task set Γ = {τi}i=1,...,n is schedulable by a fixed priority
algorithm on a set of virtual processors V = {νj}j=1,...,m

modeled by {Zj}j=1,...,m, if

∀k ∈ N : 1 ≤ k ≤ n Ck + I
FP

k ≤ Dk ,

with {Lℓ}ℓ=0,...,m calculated as follows:

L0 = Dk − Z1(Dk)

Lℓ = Zℓ(Dk) − Zℓ+1(Dk)

Lm = Zm(Dk).
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Scheduling in Linux

POSIX-like scheduling:

◮ 100 priority levels;

◮ several scheduling classes (SCHED RR, SCHED FIFO,

SCHED OTHER);

◮ strict priority service;

◮ SCHED RR and SCHED FIFO control how tasks with the
same priority are handled;

◮ SCHED OTHER have priority 0 (lowest) and are scheduled
with CFS (a fair queueing variant).
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The Scheduler

◮ One runqueue per CPU;

◮ priority arrays for RT tasks (one list per prio level, a
bitmap to identify nonempty prio levels);

◮ a tree for CFS tasks;

◮ global enforcement of priorities on SMP;

◮ throttling of RT tasks.
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Throttling Interface

To create a cgroup:

# mount -t cgroup -o cpu cgroup /dev/cgroup

# cd /dev/cgroup

# mkdir tg0

To limit its tasks to use no more than Q = 20ms every
P = 100ms:

# echo 100000 > tg0/cpu.rt_period_us

# echo 20000 > tg0/cpu.rt_runtime_us
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Throttling vs. Server Scheduling

◮ Almost the same interface;

◮ throttling only limits the CPU time consumed by tasks, it
does not enforce its provisioning (except in corner cases).
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Implementation

◮ Use an RB tree to store groups, ordered by priorities or

deadlines (boosting can promote a group to a fixed
priority);

◮ changed the rt bandwidth timer to be per-runqueue;

◮ added a task runqueue per each task group, to store its
child tasks, which cannot be stored together with child
runqueues (they have no deadline).
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Tree Sorting

static inline int rt_rq_before(struct rt_rq *a,

struct rt_rq *b)

{

if ((a->rt_nr_boosted && b->rt_nr_boosted) ||

global_rt_runtime() == RUNTIME_INF)

return rt_rq_prio(a) < rt_rq_prio(b);

if (a->rt_nr_boosted)

return 1;

if (b->rt_nr_boosted)

return 0;

return a->rt_deadline - b->rt_deadline < 0;

}
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Task Runqueues

The only user-visible change is the introduction of task
runqueues, needed to keep tasks separed from groups (groups
have priorities only when boosted).

In addition to specify a Q/P assignment for each cgroup, the
user has to specify an assignment for its task runqueues.

The bandwidth used for task runqueues cannot be used for
groups.
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Interface Implications

To create a task group, as usual:

# mount -t cgroup cgroup /dev/cgroup

# cd /dev/cgroup

# mkdir tg0

To assign Q = 20ms over P = 100ms to its tasks:

# echo 100000 > tg0/cpu.rt_period_us

# echo 20000 > tg0/cpu.rt_runtime_us

# echo 100000 > tg0/cpu.rt_task_period_us

# echo 20000 > tg0/cpu.rt_task_runtime_us
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Data Structures

struct rt_edf_tree {

struct rb_root rb_root;

struct rb_node rb_leftmost;

};

struct rt_rq {

struct prio_array active;

u64 rt_deadline;

struct hrtimer rt_period_timer;

/* ... */

};
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Data Structures (2)

struct task_rt_group {

struct rt_rq **rt_rq;

struct rt_bandwidth rt_bandwidth;

struct task_group *tg;

};

struct task_group {

struct task_rt_group rt_rq_group;

struct task_rt_group rt_task_group;

/* ... */

};
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Overheads
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HRTick
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Future Work

From an academic POV:

◮ Give a formal treatment to shared resources access;

◮ evaluate bandwidth partitioning alternatives.

About the code:

◮ evaluate overheads more extensively;

◮ one cpupri per task group;

◮ auto-determined bandwidth for task runqueues;

◮ and many, many others...
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